K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2. Cho tập hợp A = f1; 2; 3; · · · ; 2ng. Chứng minh rằng nếu ta lấy ra n + 1 số khác nhau từ tập A, luôncó 2 số chia hết cho nhau.Bài 3. Các số 1; 2; 3; · · · ; 2020 ban đầu được viết lên bảng theo một thứ tự bất kì. Ở mỗi bước, chọn 2 số bấtkì và đổi chỗ 2 số đó. Hỏi sau 6969 bước, ta có thể thu được dãy số viết ban đầu hay không?Bài 4. Trên một đường tròn, ta viết 2 số 1 và 48...
Đọc tiếp


Bài 2. Cho tập hợp A = f1; 2; 3; · · · ; 2ng. Chứng minh rằng nếu ta lấy ra n + 1 số khác nhau từ tập A, luôn
có 2 số chia hết cho nhau.
Bài 3. Các số 1; 2; 3; · · · ; 2020 ban đầu được viết lên bảng theo một thứ tự bất kì. Ở mỗi bước, chọn 2 số bất
kì và đổi chỗ 2 số đó. Hỏi sau 6969 bước, ta có thể thu được dãy số viết ban đầu hay không?
Bài 4. Trên một đường tròn, ta viết 2 số 1 và 48 số 0 theo thứ tự 1; 0; 1; 0; 0; · · · ; 0. Mỗi phép biến đổi, ta
thay một 2 cặp 2 số liền nhau bất kì (x; y) bởi (x + 1; y + 1). Hỏi nếu ta lặp lại thao tác trên thì có thể đến 1
lúc nào đó thu được 50 số giống nhau hay không?
Bài 5. Trên đường tròn lấy theo thứ tự 12 điểm A1; A2; A3; · · · ; A12. Tại điểm A1 ta viết số -1, tại các đỉnh
còn lại ta viết số 1. Ở mỗi bước, chọn 6 điểm kề nhau bất kì và đổi dấu tất cả các số tại các điểm đó. Hỏi nếu
ta lặp lại thao tác trên thì có thể đến 1 lúc nào đó thu được trạng thái: điểm A2 viết số -1, các đỉnh còn lại
viết số 1, hay không?
Bài 6. Kí hiệu S(n) là tổng các chữ số của n. Tìm n, biết:
a) n + S(n) + S(S(n)) = 2019.
b) n + S(n) + S(S(n)) = 2020.
Bài 7. Giả sử (a1; a2; a3; · · · ; an) là 1 hoán vị của (1; 2; 3; · · · ; n) (là các số 1; 2; 3; · · · ; n nhưng viết theo
thứ tự tùy ý). Chứng minh rằng nếu n lẻ thì số P = (a1 - 1)(a2 - 2)(a3 - 3) · · · (an - n) là số chẵn.
Bài 8. Trên bàn có 6 viên sỏi, được chia thành vài đống nhỏ. Mỗi phép biến đổi được thực hiện như sau: ta
lấy ở mỗi đống 1 viên và lập thành đống mới. Hỏi sau 69 bước biến đổi như trên, các viên sỏi trên bàn được
chia thành mấy đống?
Bài 9. Xung quanh công viên người ta trồng n cây, giả sử trên mỗi cây có 1 con chim. Ở mỗi lượt, có 2 con
chim đồng thời bay sang cây bên cạnh theo hướng ngược nhau.
a) Với n lẻ, chứng tỏ rằng có thể có cách để tất cả các con chim cùng đậu trên một cây.
b) Chứng minh điều ngược lại với n chẵn.
 

0

b)Có thể chia hết

Chẳng hạn:1-2-3+4+5-6-7+8+...+97-98-99+100=0 chia hết cho 1995

a)Ta thấy rằng dừ sắp sếp thành số A như thế nào thì tổng các chữ số của chúng ko đổi mà tổng của chúng là (1+100)100:2=5050 ko chia hết cho 3.Suy ra số A ko chia hết cho 3 mà 1995 chia hết cho 3 nên số A ko chia hết cho 1995

4 tháng 8 2020

cảm ơn bạn vì đã trả lời

25 tháng 11 2016

Gọi tổng các chữ số của A là (S)

Trong dãy số 1;2;3...;100

Ta bỏ riêng số 100 ra và lập thành một dãy mới:

0;1;2;...;99 (*)

Ta ghép thành từng cặp:

(0;99);(1;98);(2;97);...;(49;50)

Tổng các chữ số của 2 số trong một cặp là:18

Do đó tổng các chữ số của các số trong (*) là: 18.50 = 900

Suy ra S(A) = 900+1 = 901 ( vì số một trăm có đồng dư chữ số là 1 )

Suy ra S(A) chia cho 9 dư 1

Suy ra A  ko chia hết cho 9 suy ra A ko chia hết cho 2007 (vì 2007 chia hết cho 9 )

PHẦN B

Ta thấy một tổng luôn đồng dư với tổng các chữ số của  các số hạng khi chia cho cho 9.Do đó B đồng dư với A khi chia cho 9 

Suy ra B chi cho 9 dư 1

Suy ra B ko chia hết cho cho 9 suy ra B ko chia hết cho 2007

8 tháng 5 2017

ai muốn kết bn với tớ thì hãy click cho tớ nhé

4 tháng 1 2018

Cho mình hỏi mấy câu nữa:
Câu 1: Cho 1994 số, mỗi số bằng 1 hoặc -1. Hỏi có thể chọn ra từ 1994 số đó một số số sao cho tổng các số được chọn ra bằng tổng các số còn lại hay không?
Câu 2: So sánh
a) (-2)^91 và (-5)^35
b) (-5)^91 và (-11)^59
c) (-80)^11 và (-27)^15
d) (-31)^10 và (-17)^13
Câu 3: Cho tổng: 1+2+3+....+10. Xóa hai số bất kì, thay bằng hiệu của chúng. Cứ tiếp tục làm như vậy nhiều lần. Có khi nào kết quả nhận được bằng -1; bằng -2; bằng 0 được không?

6 tháng 8 2015

Gọi B là tổng các chữ số của A. Ta sẽ có A = 123456...9899100

Tức lúc này ta cần tính B = 1 + 2 + ... + 8 + 9 + 1 + 0 + 1 + 1 + ... + 9 + 9 + 1 + 0 + 0.

Ta sẽ tính sác xuất xuất hiện (tức tần số xuất hiện) của các chữ số 0; 1; 2 ; ... 8 ; 9 (tính cả 0 nữa các bạn nhé  )

Ta sẽ thấy 0 xuất hiện 11 lần; 1 xuất hiện 21 lần còn các chữ số còn lại là 2; 3; ...; 9 thì xuất hiện 20 lần thôi.

Vậy B = 0.11 + 1.21 + (2 + 3 + ... + 9).20 = 901 k chia hết cho 9 nên k thể chia hết cho 2007

31 tháng 12 2018

Tôi cũng nghĩ như top scorer

28 tháng 10 2016

Bài 1:

Ta có:

a=13.15.17+35

a=13.3.5.17+5.7

a=5.(13.3.17+7)

\(5⋮5\)

\(\Rightarrow5\cdot\left(13\cdot3\cdot17+7\right)⋮5\)

hay \(a⋮5\)

Vậy \(a⋮5\)

a là hợp số vì \(a⋮5\)

28 tháng 10 2016

Bài 2:

Ta thấy:

Một số khi chia cho 5 số có 5 khả năng về số dư là: 0; 1; 2; 3; 4; 5.

=> Khi 6 số tự nhiên chia cho 5 sẽ có ít nhất 2 số có cùng số dư khi chia cho 5 (1)

Đặt 2 số đó là: a=5k+x; b=5n+x \(\left(a,b,n,k,x\in N\right)\)

=>a-b=5k+x-(5n+x)=5k+x-5n-x=5k-5n=5(k-n)

\(5⋮5\)

\(\Rightarrow5\left(k-n\right)⋮5\)

=> Hiệu của 2 số có cùng số dư khi chia cho 5 chia hết cho 5 (2)

Từ (1) và (2)

=> Trong 5 số tự nhiên bất kì ta luôn tìm được 2 trong 6 số có hiệu chia hết cho 5. (đpcm)