K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2018

bài 1 : \(a^2-b^2-4ab+4\)

\(=\left(a-b\right)\left(a+b\right)-4\left(ab-1\right)\)

a: =(x+y)^3+z^3-3xy(x+y)-3xyz

=(x+y+z)(x^2+2xy+y^2-xz-yz+z^2)-3xy(x+y+z)

=(x+y+z)(x^2+y^2+z^2-xy-xz-yz)

b: a+b+c<>0

A=(a+b+c)^3-a^3-b^3-c^3/a+b+c

=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)/(a+b+c)

=a^2+b^2+c^2-ab-ac-bc

=1/2[a^2-2ab+b^2+b^2-2bc+c^2+a^2-2ac+c^2]

=1/2[(a-b)^2+(b-c)^2+(a-c)^2]>=0

20 tháng 7 2018

Gọi 2 số lẻ liên tiếp là:   \(2k-1\)và   \(2k+1\)

Xét hiệu:    \(A=\left(2k+1\right)^2-\left(2k-1\right)^2\)

                  \(=4k^2+4k+1-\left(4k^2-4k+1\right)\)

                  \(=8k\) \(⋮\)\(8\)

\(\Rightarrow\)\(A\)\(⋮\)\(8\)

hay hiệu các bình phương của 2 số lẻ liên tiếp chia hết cho 8

28 tháng 9 2017

\(x^2-6x+8\)

\(C1\)   \(=x^2-4x-2x+8\)

\(=\left(x^2-4x\right)-\left(2x-8\right)\)

\(=x\left(x-4\right)-2\left(x-4\right)\)

\(=\left(x-2\right)\left(x-4\right)\)

\(C2\):  \(x^2-6x+8\)

  \(=x^2-6x+9-1\)

\(=\left(x^2-6x+9\right)-1\)

\(=\left(x-3\right)^2-1\)

\(=\left(x-3-1\right)\left(x-3+1\right)\)

\(=\left(x-4\right)\left(x-2\right)\)

\(C3\) \(x^2-6x+8\)

 \(=x^2-2x-4x+8\)

\(=\left(x^2-2x\right)-\left(4x-8\right)\)

\(=x\left(x-2\right)-4\left(x-2\right)\)

\(=\left(x-2\right)\left(x-4\right)\)

21 tháng 3 2017

6 tháng 8 2016

a.Gọi 2 số lẻ là a và (a +2)

Ta có hiệu bình phương 2 số lẻ là

(a + 2) ^2 - a^2 = a^2 + 4a + 4 - a^2 = 4a + 4= 4(a+1)

Vì a là 1 số lẻ nên (a+1) là 1 số chẵn => 4(a+1) chia hết 8

b. 7 hằng đẳng thức

  1. Bình phương của một tổng:

  2. Bình phương của một hiệu:

  3. Hiệu hai bình phương:

  4. Lập phương của một tổng:

  5. Lập phương của một hiệu:

  6. Tổng hai lập phương:

  7. Hiệu hai lập phương:

 

 

19 tháng 7 2015

a)gọi hai số lẽ liên tiếp đó là: 2a+1;2a+3

ta có:

(2a+1)2-(2a+3)2=(2a+1+2a+3)(2a+1-2a-3)

=(4a+4).(-2)=4(a+1)(-2)=-8(a+1)

vì -8 chia hết cho 8 =>-8(a+1) chia hết cho 8

vậy hiệu bình phương của 2 số lẻ liên tiếp chia hết cho 8

b) gọi số lẽ đó là 2k+1

ta có:

(2k+1)2-1=(2k+1-1)(2k+1+1)

=2k.(2k+2)

=4k2+4k

Vì 4k2 chia hết cho 4 ; 4k chia hết cho 2 

=>4k2+4k chia hết cho 8

Vậy  Bình phương của 1 số lẻ bớt đi 1 thì chia hết cho 8

19 tháng 7 2015

de thi lam di 

noi vay toi cung noi duoc