K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
Bảng xếp hạng
Tất cả
Toán
Vật lý
Hóa học
Sinh học
Ngữ văn
Tiếng anh
Lịch sử
Địa lý
Tin học
Công nghệ
Giáo dục công dân
Âm nhạc
Mỹ thuật
Tiếng anh thí điểm
Lịch sử và Địa lý
Thể dục
Khoa học
Tự nhiên và xã hội
Đạo đức
Thủ công
Quốc phòng an ninh
Tiếng việt
Khoa học tự nhiên
- Tuần
- Tháng
- Năm
-
DHĐỗ Hoàn VIP60 GP
-
50 GP
-
41 GP
-
26 GP
-
119 GP
-
VN18 GP
-
14 GP
-
N12 GP
-
H10 GP
-
8 GP
Số tập con của tập A gồm n phần tử là 2\(^n\)
Thật vậy, bằng quy nạp ta có :
Với n=0, tập rỗng có 2\(^0\)=1 tập con. .
Với n=1, có 2\(^1\) = 2 tập con là rỗng và chính nó.
Giả sử công thức đúng với n=k. Tức là số tập con của tập hợp gồm k phần tử là 2\(^k\)
Ta phải chứng minh công thức đúng với k+1.
Ngoài 2\(^k\) tập con vốn có, thêm cho mỗi tập cũ phần tử thứ k + 1 thì được một tập con mới. Vậy ta được 2^k tập con mới. Tổng số tập con của tập hợp gồm k + 1 phần tử (tức tổng số tập con của tập gồm 2^k phần tử và tập con mới tạo thành) là : 2^k + 2^k = 2^k . 2 = 2 \(^{k+1}\)
Vậy số tập con của tập A gồm n phần tử là 2\(^n\)