K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2023

a: BC=BH+CH

=4+6

=10(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH=\sqrt{4\cdot6}=2\sqrt{6}\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}AB=\sqrt{4\cdot10}=2\sqrt{10}\left(cm\right)\\AC=\sqrt{6\cdot10}=2\sqrt{15}\left(cm\right)\end{matrix}\right.\)

b: M là trung điểm của AC

=>\(AM=\dfrac{AC}{2}=\sqrt{15}\left(cm\right)\)

Xét ΔAMB vuông tại A có

\(tanAMB=\dfrac{AB}{AM}=\sqrt{\dfrac{2}{3}}\)

=>\(\widehat{AMB}\simeq39^0\)

c: ΔABM vuông tại A có AK là đường cao

nên \(BK\cdot BM=BA^2\left(1\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\left(2\right)\)

Từ (1) và (2) suy ra \(BK\cdot BM=BH\cdot BC\)

25 tháng 10 2023

loading...  Hình vẽ đây!