Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Vì x,y là số nguyên dương
=> 1003 và 2y cũng là số nguyên dương
Vì 2008 là số chẵn
mà 2y cũng là số chẵn
=> 1003x là số chẵn
Vì 1003 là số lẻ
mà 1003x là số chẵn
=> x là số chẵn
=> x chia hết cho 2 (đpcm)
Vậy ta có đpcm
Bài ................khó................quá................mà................trời....................mưa...................rét.................nữa.................tick................ủng ...............hộ................mình.................nha................
vbai.................kho..................wa..............troi...................thi....................lanh..................tich................ung..................ho.....................minh..................nha................ret.................wa..................troi............thi.................mua.......................vua..............di...............hoc.....................ve.....................uot................lanh...............wa
a. Câu hỏi của trương bảo ánh - Toán lớp 6 - Học toán với OnlineMath
b. Gọi: \(\left(5n+2;5n+3\right)=d\)
=> \(\hept{\begin{cases}5n+3⋮d\\5n+2⋮d\end{cases}}\)
=> \(\left(5n+3\right)-\left(5n+2\right)⋮d\)
=> \(1⋮d\)
=> d = 1.
Vậy ( 5n +2 ; 5n +3 ) = 1 hay 5n +2 và 5n + 3 nguyên tố cùng nhau.
Đặt A=\(2^0+2^1+2^2+....+2^{5n-3}+2^{5n-2}+2^{5n-1}\)
\(\Leftrightarrow A=\left(2^0+2^1+2^2+2^3+2^4+2^5\right)+...+\left(2^{5n+2}+2^{5n+1}+2^{5n}+2^{5n-1}+2^{5n-2}+2^{5n-3}\right)\)
\(\Leftrightarrow A=2^0\left(1+2+2^2+2^3+2^4\right)+....+2^{5n+2}\left(1+2+2^2+2^3+2^4\right)\)
\(\Leftrightarrow A=2^0\cdot31+2^5\cdot31+....+2^{5n+2}\cdot31\)
\(\Leftrightarrow A=31\cdot\left(2^0+2^5+...+2^{5n+2}\right)\)
\(\Rightarrow A⋮31\left(đpcm\right)\)
1. n không chia hết cho 3 suy ra n = 3k +1 hoặc n = 3k +2.
- nếu n = 3k +1 thì 5n + 1 = 5(3k +1) +1 = 15k + 6 ⋮ 3.
- nếu n = 3k +2 thì 5n + 2 = 5(3k + 2) +2 = 15k + 12 ⋮ 3
2. p là số nguyên tố lớn hơn 3 nên p sẽ có dạng 6k + 1 hoặc 6k + 5.
nếu p là 6k + 1 thì p + 2 = 6k + 3 ⋮ 3, không là số nguyên tố
do đó p có dạng 6k+5, khi đó p + 1 = 6k : 6 ⋮ 6.
3.
x(1-y) + 2(1-y) = 5
(x+2)(1-y) = 5
xét các trường hợp : x + 2 = 1; 1 - y = 5 và x + 2 = 5, 1 - y =1
4. ta có: n\(^2\) + 3 = (n+1)(n-1) + 4 ⋮ (n-1) khi 4 ⋮ (n-1), khi đó (n-1) \(\in\) Ư(4) .
1. Cho số nguyên x là 9 (Thỏa mãn x:7, dư 2); 2x+3(giả thuyết)
=> (2.9)+3 = 21 chia hết cho7 (chia hết cho viết bằng ki hiệu nha bạn)
2. 2^0+2^1+2^2+2^3+...+2^5n-3+2^5n-2+2^5-1
= (2^0+2^1+2^2+2^3+2^4)+...+(2^5n-5+2^5n-4+2^5n-3+2^5n-2+2^5n-1)
=(1+2+4+8+16)+...+(2^5n-5+2^5n-4+2^5n-3+2^5n-2+2^5n-1) chia hết cho 31