K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Δ=(m+2)^2-4(m^2-1)

=m^2+4m+4-4m^2+4

=-3m^2+4m+8

Để phương trình có hai nghiệm thì -3m^2+4m+8>=0

=>\(\dfrac{2-2\sqrt{7}}{3}< =m< =\dfrac{2+2\sqrt{7}}{3}\)

x1-x2=2

=>(x1-x2)^2=4

=>(x1+x2)^2-4x1x2=4

=>(m+2)^2-4(m^2-1)=4

=>-3m^2+4m+8=4

=>-3m^2+4m+4=0

=>m=2 hoặc m=-2/3

29 tháng 5 2021

\(x^2-2\left(m-1\right)x+m-5=0\)

Xét \(\Delta=4\left(m-1\right)^2-4\left(m-5\right)=4m^2-12m+24\)\(=\left(2x-3\right)^2+15>0\forall m\)

=>Pt luôn có hai nghiệm pb

Theo viet:\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m-5\end{matrix}\right.\)

Đặt \(A=\left|x_1-x_2\right|\)

\(\Rightarrow A^2=\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2\)

\(=4\left(m-1\right)^2-4\left(m-5\right)=4m^2-12m+24\)

\(=\left(2m-3\right)^2+15\ge15\)

\(\Rightarrow A\ge\sqrt{15}\)

\(A_{min}=\sqrt{15}\Leftrightarrow m=\dfrac{3}{2}\)

29 tháng 5 2021

ok bạn

 

6 tháng 6 2023

\(\Delta=\left(-m\right)^2-2.1.\left(m-1\right)\\ =m^2-2m+1\\ =\left(m-1\right)^2\)

Phương trình có hai nghiệm phân biệt :

\(\Leftrightarrow\Delta>0\\ \Rightarrow\left(m-1\right)^2>0\\ \Rightarrow m\ne1\)

Theo vi ét : 

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)

\(x^2_1+x^2_2=x_1+x_2\\ \Leftrightarrow x^2_1+x^2_2=m\\ \Leftrightarrow\left(x^2_1+2x_1x_2+x_2^2\right)-2x_1x_2=m\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-m=0\\ \Leftrightarrow m^2-2\left(m-1\right)-m=0\\ \Leftrightarrow m^2-2m+2-m=0\\ \Leftrightarrow m^2-3m+2=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\left(loại\right)\\m=2\left(t/m\right)\end{matrix}\right.\)

Vậy \(m=2\)

1) Thay m=2 vào (1), ta được:

\(x^2-2\cdot3x+16-8=0\)

\(\Leftrightarrow x^2-6x+8=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)

Vậy: Khi m=2 thì (1) có hai nghiệm phân biệt là: \(x_1=2\)\(x_2=4\)

b) Ta có: \(\Delta=4\cdot\left(2m-1\right)^2-4\cdot1\cdot\left(8m-8\right)\)

\(\Leftrightarrow\Delta=4\cdot\left(4m^2-4m+1\right)-4\left(8m-8\right)\)

\(\Leftrightarrow\Delta=16m^2-16m+4-32m+32\)

\(\Leftrightarrow\Delta=16m^2-48m+36\)

\(\Leftrightarrow\Delta=\left(4m\right)^2-2\cdot4m\cdot6+6^2\)

\(\Leftrightarrow\Delta=\left(4m-6\right)^2\)

Để phương trình có hai nghiệm phân biệt thì \(\left(4m-6\right)^2>0\)

mà \(\left(4m-6\right)^2\ge0\forall m\)

nên \(4m-6\ne0\)

\(\Leftrightarrow4m\ne6\)

hay \(m\ne\dfrac{3}{2}\)

Vậy: Để phương trình có hai nghiệm phân biệt thì \(m\ne\dfrac{3}{2}\)

27 tháng 4 2019

Làm câu b)

Để phương trình có hai nghiệm phân biệt:

\(\Delta'\ge0\Leftrightarrow3^2-\left(m+1\right)\ge0\Leftrightarrow m\le8\)

Áp dụng định lí Vi-ét ta có:

\(\hept{\begin{cases}x_1+x_2=6\\x_1.x_2=m+1\end{cases}}\)(1)

Xét: \(x^2_1+x^2_2=3\left(x_1+x_2\right)\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=3\left(x_1+x_2\right)\)(2)

Từ 1, 2 ta có:

\(6^2-2\left(m+1\right)=3.6\Leftrightarrow m=8\)(tm)

Vậy ...

23 tháng 6 2021

a) Pt có hai nghiệm trái dấu \(\Leftrightarrow ac< 0\Leftrightarrow m< 0\)

b) Pt có nghiệm khi \(\Delta\ge0\Leftrightarrow36-4m\ge0\Leftrightarrow m\le9\)

Áp dụng hệ thức viet có:

\(\left\{{}\begin{matrix}x_1+x_2=6\left(1\right)\\x_1x_2=m\left(2\right)\end{matrix}\right.\)

Từ (1) kết hợp với điều kiện có:\(\left\{{}\begin{matrix}x_1+x_2=6\\x_1-2x_2=m\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3x_2=6-m\\x_1+x_2=6\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{6-m}{3}\\x_1=6-x_2=\dfrac{12+m}{3}\end{matrix}\right.\)

\(\Rightarrow x_1x_2=\dfrac{6-m}{3}.\dfrac{12+m}{3}=m\)

\(\Leftrightarrow72-15m-m^2=0\)

\(\Delta=3\sqrt{57}\)

\(\Rightarrow m=\dfrac{-15\pm3\sqrt{57}}{2}\) (thỏa mãn)

Vậy...

23 tháng 6 2021

mình cản ơn

21 tháng 5 2017

Theo hệ thức Vi-ét ta có:

x1+x2=\(-\frac{-1}{1}=1\)

x1x2=\(\frac{1+m}{1}=1+m\)

=> x1x2(x1x2-2)=3(x1+x2)

<=> (1+m)(1+m-2)=3

<=> m2-1=3

<=>m2=4

<=> m=-2 hoặc m =2 (loại)

Vậy m = -2

26 tháng 1 2022

a, Thay m = -2 ta được : 

x^2 + 6x + 3 = 0 

\(\Leftrightarrow x=-3+\sqrt{6};x=-3-\sqrt{6}\)

b, Để pt có 2 nghiệm 

\(\Delta'=\left(m-1\right)^2-\left(-m+1\right)=m^2-2m+1+m-1=m^2-m\)> 0 

Theo Viet : \(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=-m+1\end{matrix}\right.\)

Ta có : \(\left(x_1+x_2\right)^2+5x_1x_2=9\)

\(\Leftrightarrow4\left(m-1\right)^2+5\left(-m+1\right)=9\)

\(\Leftrightarrow4m^2-8m+4-5m+5=9\Leftrightarrow4m^2-13m=0\)

\(\Leftrightarrow m\left(4m-13\right)=0\Leftrightarrow m=0\left(ktm\right);m=\dfrac{13}{4}\)(tm) 

26 tháng 1 2022

a, Thay  m=-2 vào pt ta có:
\(x^2-2\left(m-1\right)x-m+1=0\\ \Leftrightarrow x^2-2\left(-2-1\right)x-\left(-2\right)+1=0\\ \Leftrightarrow x^2+6x+3=0\\ \Leftrightarrow\left(x^2+6x+9\right)-6=0\\ \Leftrightarrow\left(x+3\right)^2-\sqrt{6^2}=0\\ \Leftrightarrow\left(x+3-\sqrt{6}\right)\left(x+3+\sqrt{6}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-3+\sqrt{6}\\x=-3-\sqrt{6}\end{matrix}\right.\)

 \(b,\Delta'=\left[-\left(m-1\right)\right]^2-\left(-m+1\right)\\ =m^2-2m+1+m-1\\ =m^2-m\)

Để pt có 2 nghiệm thì \(\) \(\Delta'\ge0\Leftrightarrow m^2-m\ge0\Leftrightarrow\left[{}\begin{matrix}m\ge1\\m\le0\end{matrix}\right.\)

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=-m+1\end{matrix}\right.\)

\(x_1^2+x_2^2+7x_1x_2=9\\ \Leftrightarrow\left(x_1+x_2\right)^2+5x_1x_2=9\\ \Leftrightarrow\left(2m-2\right)^2+5\left(-m+1\right)=9\\ \Leftrightarrow4m^2-8m+4-5m+5-9=0\\ \Leftrightarrow4m^2-13m=0\\ \Leftrightarrow m\left(4m-13\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=0\left(tm\right)\\m=\dfrac{13}{4}\left(tm\right)\end{matrix}\right.\)