K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác BMDN có 

BN//DM

BN=DM

Do đó: BMDN là hình bình hành

Suy ra: BM//DN

b: Ta có: ABCD là hình chữ nhật

nên AC cắt BD tại trung điểm của mỗi đường

hay O là trung điểm chung của AC và BD(1)

Ta có: BMDN là hình bình hành

nên BD cắt MN tại trung điểm của mỗi đường

mà O là trung điểm của BD

nên O là trung điểm của MN(2)

Từ (1) và (2) suy ra AC,BD,MN đồng quy

a: Xét tứ giác BMDN có 

BN//DM

BN=DM

Do đó: BMDN là hình bình hành

Suy ra: BM//DN

b: Ta có: BMDN là hình bình hành

nên BD cắt MN tại trung điểm của mỗi đường(1)

Ta có: ABCD là hình bình hành

nên AC cắt BD tại trung điểm của mỗi đường(2)

Từ (1) và (2) suy ra BD,MN,AC đồng quy

4 tháng 1 2023

quên cách làm mất rồi...

4 tháng 1 2023

khác gì nhaubucminh

 

16 tháng 8 2019

b) O là trung điểm của BD mà ABCD là hình chữ nhật nên đường chéo thứ hai AC phải qua O.

Lại có tứ giác BMDN là hình bình hành nên MN phải đi qua trung điểm O của BD.

Vậy AC, BD, MN đồng quy tại O.

1: 

a: Xét tứ giác BMDN có 

DM//BN

DM=BN

Do đó: BMDN là hình bình hành

Suy ra: BM//DN

23 tháng 2 2022

hay thik hay thiệc nhưng phải ko cs ai giải trong 10h thik mới đc cho vào câu hỏi hay =))))

21 tháng 8 2019

A B C D E F M N O

Gọi O là giao điểm 2 đường chéo AC và BD

Xét \(\Delta\)AOE và \(\Delta\)COF có:AO=OC ( vì ABCD là hình bình hành ),CF=AE ( giả thiết ),^AOE=^COF ( đối đỉnh )

a

Vì vậy \(\Delta AOE=\Delta COF\left(c.g.c\right)\Rightarrow OE=OF\left(1\right)\)

Xét \(\Delta\)BON và \(\Delta\)DOM có:OB=OD ( vì ABCD là hình bình hành ),MD=BN ( vì AM=CN ),^MOD=^NOB ( đối đỉnh )

Vì vậy \(\Delta BON=\Delta COM\left(c.g.c\right)\Rightarrow OM=ON\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\) suy ra tứ giác EMFN là hình bình hành.

b

Hình bình hành EMFN có O là giao điểm của 2 đường chéo,tứ giác ABCD có O là giao điểm của 2 đường chéo.

=> ĐPCM

P/S:Mik ko chắc lắm đâu nha,nhất là câu b ý:p

10 tháng 11 2021