K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2023

1: Bạn bổ sung đề bài đi bạn

2: Tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\\left(2m-1\right)x-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\\left(2m-1\right)x=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{4}{2m-1}\\y=0\end{matrix}\right.\)

=>\(OA=\sqrt{\left(\dfrac{4}{2m-1}-0\right)^2+\left(0-0\right)^2}=\dfrac{4}{\left|2m-1\right|}\)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=\left(2m-1\right)x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=\left(2m-1\right)\cdot0-4=-4\end{matrix}\right.\)

=>OB=4

Để ΔOAB cân tại O thì OA=OB

=>\(\dfrac{4}{\left|2m-1\right|}=4\)

=>\(\dfrac{1}{\left|2m-1\right|}=1\)

=>\(\left|2m-1\right|=1\)

=>\(\left[{}\begin{matrix}2m-1=1\\2m-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2m=2\\2m=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=0\end{matrix}\right.\)

20 tháng 11 2023

Với m=1 nha bn mik thíu

 

19 tháng 11 2023

a) Khi m =2 thì y = 3x - 1 

(Bạn tự vẽ tiếp)

b) Để \((d)//(d_{1})\) thì \(\begin{cases} 2m-1=-3\\ -3m+5\neq2 \end{cases} \) ⇔ \(\begin{cases} m=-1\\ m\neq1 \end{cases} \) ⇔ \(m=-1\)

c)

Để \((d) ⋂ (d1)\) thì \(2m-1\neq-3 \) ⇔ \(m\neq-1\)

Giao điểm của 2 đường thẳng thuộc trục tung => x=0

Khi đó, ta có: \(y=-3.0+2=2\)

⇒ Điểm \((0;2)\) cũng thuộc đường thẳng (d)

⇒ \(2=(2m-1).0-3m+5\) ⇔ \(m=1\) (TM)

 

b: Thay x=1 vào y=x+1, ta đc:

y=1+1=2

Thay x=1 và y=2 vào (d), ta được;

m+1-2=2

=>m+1=2

=>m=1

c: Tọa độ A là:

y=0 và (m+1)x-2=0

=>x=2/m+1 và y=0

=>OA=2/|m+1|

Tọa độ B là:

x=0 và y=-2

=>OB=2

Để góc OAB=45 độ thì OA=OB

=>|m+1|=1

=>m=0 hoặc m=-2

8 tháng 4 2021

Theo Cô si       4x+\frac{1}{4x}\ge2  , đẳng thức xảy ra khi và chỉ khi   4x=\frac{1}{4x}=1\Leftrightarrow x=\frac{1}{4}). Do đó

                                         A\ge2-\frac{4\sqrt{x}+3}{x+1}+2016

                                        A\ge4-\frac{4\sqrt{x}+3}{x+1}+2014

                                        A\ge\frac{4x-4\sqrt{x}+1}{x+1}+2014=\frac{\left(2\sqrt{x}-1\right)^2}{x+1}+2014\ge2014

Hơn nữa    A=2014 khi và chỉ khi \left\{{}\begin{matrix}x=\dfrac{1}{4}\\2\sqrt{x}-1=0\end{matrix}\right.  \Leftrightarrow x=\dfrac{1}{4} .

Vậy  GTNN  =  2014

5 tháng 12 2021

a, Thay x = -2 => y = -2 + 4 = 2 => A(-2;2) 

(d) cắt y = x + 4 tại A(-2;2) <=> 2 = -2 ( m + 1 ) - 2 

<=> -2m - 2 - 2 = 2 <=> -2m = 6 <=> m = -3 

Vậy (d) : y = -2x - 2 

b, bạn tự vẽ nhé 

c, Cho x = 0 => y = -2 

=> (d) cắt trục Oy tại A(0;-2) => OA = | -2 | = 2 

Cho y = 0 => x = -1 

=> (d) cắt trục Ox tại B(-1;0) => OB = | -1 | = 1 

Ta có : \(S_{OAB}=\frac{1}{2}.OA.OB=\frac{1}{2}.2.1=1\)( dvdt ) 

5 tháng 12 2021

Đặt:  (d):  y = (m+5)x + 2m - 10

Để y là hàm số bậc nhất thì:  m + 5 # 0    <=>   m # -5

Để y là hàm số đồng biến thì: m + 5 > 0  <=>  m > -5

(d) đi qua A(2,3) nên ta có:

3 = (m+5).2 + 2m - 10

<=>  2m + 10 + 2m - 10 = 3

<=>  4m = 3

<=> m = 3/4

(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:

9 = (m+5).0 + 2m - 10

<=> 2m - 10 = 9

<=>  2m = 19

<=> m = 19/2

(d) đi qua điểm 10 trên trục hoành nên ta có:

0 = (m+5).10 + 2m - 10

<=> 10m + 50 + 2m - 10 = 0

<=>  12m = -40

<=> m = -10/3

(d) // y = 2x - 1  nên ta có:

\hept{m+5=22m−10≠−1\hept{m+5=22m−10≠−1   <=>   \hept{m=−3m≠92\hept{m=−3m≠92  <=>  m=−3

Giả sử (d) luôn đi qua điểm cố định M(x0; y0)

Ta có:  y0=(m+5)x0+2m−10y0=(m+5)x0+2m−10

<=>  mx0+5x0+2m−10−y0=0mx0+5x0+2m−10−y0=0

<=>  m(xo+2)+5x0−y0−10=0m(xo+2)+5x0−y0−10=0

Để M cố định thì:  \hept{x0+2=05x0−y0−10=0\hept{x0+2=05x0−y0−10=0   <=>   \hept{x0=−2y0=−20\hept{x0=−2y0=−20

Vậy...

Bài 1 : Cho hàm số y = (m + 5)x+ 2m – 10 Với giá trị nào của m thì y là hàm số bậc nhấtVới giá trị nào của m thì hàm số đồng biến.Tìm m để đồ thị hàm số điqua điểm A(2; 3)Tìm m để đồ thị cắt trục tung tại điểm có tung độ bằng 9.Tìm m để đồ thị đi qua điểm 10 trên trục hoành .Tìm m để đồ thị hàm số song song với đồ thị hàm số y = 2x -1Chứng minh đồ thị hàm số luôn đi...
Đọc tiếp

Bài 1 : Cho hàm số y = (m + 5)x+ 2m – 10 
Với giá trị nào của m thì y là hàm số bậc nhất
Với giá trị nào của m thì hàm số đồng biến.
Tìm m để đồ thị hàm số điqua điểm A(2; 3)
Tìm m để đồ thị cắt trục tung tại điểm có tung độ bằng 9.
Tìm m để đồ thị đi qua điểm 10 trên trục hoành .
Tìm m để đồ thị hàm số song song với đồ thị hàm số y = 2x -1
Chứng minh đồ thị hàm số luôn đi qua 1 điểm cố định với mọi m.
Tìm m để khoảng cách từ O tới đồ thị hàm số là lớn nhất
Bài 2: Cho đường thẳng y=2mx +3-m-x (d) . Xác định m để:
Đường thẳng d qua gốc toạ độ 
Đường thẳng d song song với đường thẳng 2y- x =5
Đường thẳng d tạo với Ox một góc nhọn
Đường thẳng d tạo với Ox một góc tù
Đường thẳng d cắt Ox tại điểm có hoành độ 2 
Đường thẳng d cắt đồ thị Hs y= 2x – 3 tại một điểm có hoành độ là 2
Đường thẳng d cắt đồ thị Hs y= -x +7 tại một điểm có tung độ y = 4
Đường thẳng d đi qua giao điểm của hai đường thảng 2x -3y=-8 và y= -x+1
Bài 3: Cho hàm số y=( 2m-3).x+m-5
Vẽ đồ thị với m=6
Chứng minh họ đường thẳng luôn đi qua điểm cố định khi m thay đổi
Tìm m để đồ thị hàm số tạo với 2 trục toạ độ một tam giác vuông cân
Tìm m để đồ thị hàm số tạo với trục hoành một góc 45o
Tìm m để đồ thị hàm số tạo với trục hoành một góc 135o
Tìm m để đồ thị hàm số tạo với trục hoành một góc 30o , 60o
Tìm m để đồ thị hàm số cắt đường thẳng y = 3x-4 tại một điểm trên 0y 
Tìm m để đồ thị hàm số cắt đường thẳng y = -x-3 tại một điểm trên 0x 
Bài4 (Đề thi vào lớp 10 tỉnh Hải Dương năm 2000,2001) Cho hàm số y = (m -2)x + m + 3
a)Tìm điều kiện của m để hàm số luôn luôn nghịch biến .
b)Tìm điều kiện của m để đồ thị cắt trục hoành tại điểm có hoành độ bằng 3.
c)Tìm m để đồ thị hàm số y = -x + 2, y = 2x –1 và y = (m - 2)x + m + 3 đồng quy.
d)Tìm m để đồ thị hàm số tạo với trục

4
6 tháng 1 2019

Bài 1:

Đặt:  (d):  y = (m+5)x + 2m - 10

Để y là hàm số bậc nhất thì:  m + 5 # 0    <=>   m # -5

Để y là hàm số đồng biến thì: m + 5 > 0  <=>  m > -5

(d) đi qua A(2,3) nên ta có:

3 = (m+5).2 + 2m - 10

<=>  2m + 10 + 2m - 10 = 3

<=>  4m = 3

<=> m = 3/4

6 tháng 1 2019

(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:

9 = (m+5).0 + 2m - 10

<=> 2m - 10 = 9

<=>  2m = 19

<=> m = 19/2

(d) đi qua điểm 10 trên trục hoành nên ta có:

0 = (m+5).10 + 2m - 10

<=> 10m + 50 + 2m - 10 = 0

<=>  12m = -40

<=> m = -10/3

(d) // y = 2x - 1  nên ta có:

\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\)   <=>   \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\)  <=>  \(m=-3\)

10 tháng 10 2023

a) \(y=\left(1-m\right)x+m+2\left(d\right)\)

\(y=2x-1\left(d'\right)\)

\(\left(d\right)//\left(d'\right)\Leftrightarrow\left\{{}\begin{matrix}1-m=2\\m+2\ne-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=-1\\m\ne-3\end{matrix}\right.\)

\(\Leftrightarrow m=-1\)

Vậy với \(m=-1\) để \(\left(d\right)//\left(d'\right)\)

b) \(\left(d\right)\cap\left(Ox\right)=A\left(x;0\right)\)

\(\Leftrightarrow\left(1-m\right)x+m+2=0\)

\(\Leftrightarrow x=\dfrac{m-1}{m+2}\)

\(\Rightarrow A\left(\dfrac{m-1}{m+2};0\right)\)

\(\Rightarrow OA=\sqrt[]{\left(\dfrac{m-1}{m+2}\right)^2}=\left|\dfrac{m-1}{m+2}\right|\)

\(\left(d\right)\cap\left(Oy\right)=B\left(0;y\right)\)

\(\Leftrightarrow\left(1-m\right).0+m+2=y\)

\(\Leftrightarrow y=m+2\)

\(\Rightarrow B\left(0;m+2\right)\)

\(\Rightarrow OB=\sqrt[]{\left(m+2\right)^2}=\left|m+2\right|\)

Để \(\Delta OAB\) là \(\Delta\) vuông cân khi và chỉ khi

\(\left|\dfrac{m-1}{m+2}\right|=\left|m+2\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{m-1}{m+2}=m+2\\\dfrac{m-1}{m+2}=-\left(m+2\right)\end{matrix}\right.\) \(\left(m\ne-2\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(m+2\right)^2=m-1\\\left(m+2\right)^2=1-m\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m^2+2m+4=m-1\\m^2+2m+4=1-m\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m^2+m+5=0\left(1\right)\\m^2+3m+3=0\left(2\right)\end{matrix}\right.\)

Giải \(pt\left(1\right):\Delta=1-20=-19< 0\)

\(\Rightarrow\left(1\right)\) vô nghiệm

Giải \(pt\left(2\right):\Delta=9-12=-3< 0\)

\(\Rightarrow\left(2\right)\) vô nghiệm

Vậy không có giá trị nào của \(m\) thỏa mãn đề bài