K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2021

1. Cho các số tự nhiên a,b,c thỏa mãn a2+b2+c2=ab+bc+ca và a+b+c=3. Tính M=a2016+2015b2015+2020c

a2+b2+c2=ab+bc+ca

<=> 2( a2+b2+c2 ) =2( ab+bc+ca )

<=> 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ca

<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = 0

<=> ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( c2 - 2ca + a2 ) = 0

<=> ( a - b )2 + ( b - c )2 + ( c - a )2 = 0

Dễ chứng minh VT ≥ 0 ∀ a,b,c. Dấu "=" xảy ra <=> a=b=c

Lại có a+b+c=3 => a=b=c=1

từ đây bạn thế vào tính M nhé :))

10 tháng 4 2021

2.Cho x>y>0. Chứng minh \(\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)

Ta có : \(\frac{x^2-y^2}{x^2+y^2}>\frac{x-y}{x+y}\)

<=> \(\frac{x^2-y^2}{x^2+y^2}-\frac{x-y}{x+y}>0\)

<=> \(\frac{\left(x^2-y^2\right)\left(x+y\right)}{\left(x^2+y^2\right)\left(x+y\right)}-\frac{\left(x^2+y^2\right)\left(x-y\right)}{\left(x^2+y^2\right)\left(x+y\right)}>0\)

<=> \(\frac{x^3+x^2y-xy^2-y^3}{\left(x^2+y^2\right)\left(x+y\right)}-\frac{x^3-x^2y+xy^2-y^3}{\left(x^2+y^2\right)\left(x+y\right)}>0\)

<=> \(\frac{x^3+x^2y-xy^2-y^3-x^3+x^2y-xy^2+y^3}{\left(x^2+y^2\right)\left(x+y\right)}>0\)

<=> \(\frac{2x^2y-2xy^2}{\left(x^2+y^2\right)\left(x+y\right)}>0\)

<=> \(\frac{2xy\left(x-y\right)}{\left(x^2+y^2\right)\left(x+y\right)}>0\)( đúng vì x > y > 0 )

=> đpcm