Cho tam giác $ABC$, trung tuyến $AM$. Gọi $I$ là trung điểm $AM$, $D$ là giao điểm của $BI$ và $AC$.
a) Chứng minh $AD=\dfrac{1}{2}DC$;
b) So sánh độ dài $BD$ và $ID$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(BC\perp AB';B'C'\perp AB'\) => BC//B'C'
\(\Rightarrow\dfrac{AB}{AB'}=\dfrac{BC}{B'C'}\Rightarrow\dfrac{x}{x+h}=\dfrac{a}{a'}\)
\(\Rightarrow a'x=ax+ah\Rightarrow x\left(a'-a\right)=ah\Rightarrow x=\dfrac{ah}{a'-a}\left(dpcm\right)\)
Xét tam giác có và nên suy ra // .
Theo hệ quả định lí Thalès, ta có:
Suy ra
.
là hình thang suy ra // .
Áp dụng hệ quả định lí Thalès, ta có:
Suy ra (đpcm).
Trong tam giác , ta có: // (gt)
Suy ra (hệ quả định lí Thalès) (1)
Trong tam giác , ta có: // (gt)
Suy ra (hệ quả định lí Thalès) (2)
Lại có: // (gt); // (gt)
Suy ra //
Trong tam giác , ta có: // (chứng minh trên)
Suy ra (định lí Thalès) (3)
Từ (1), (2) và (3) suy ra MN = PQ$ (đpcm).
Lời giải:
a. $3x^2-9x=3x(x-3)$
b. $4x^2+7y-4xy-7x=(4x^2-4xy)-(7x-7y)=4x(x-y)-7(x-y)=(x-y)(4x-7)$
Lời giải:
$x^2+x-12=0$
$\Leftrightarrow (x^2-3x)+(4x-12)=0$
$\Leftrightarrow x(x-3)+4(x-3)=0$
$\Leftrightarrow (x-3)(x+4)=0$
$\Leftrightarrow x-3=0$ hoặc $x+4=0$
$\Leftrightarrow x=3$ hoặc $x=-4$
Khi đó, là đường trung tuyến của tam giác .
Vì là trọng tâm của tam giác nên điểm nằm trên cạnh .
Ta có hay .
Vì // , theo định lí Thalès, ta suy ra: .
Ta có (vì là trung điểm của cạnh ) nên .
Do đó (đpcm).
Ta có DE//AC \(\Rightarrow\dfrac{AE}{AB}=\dfrac{CD}{BC}\) (Talet)
Ta có DF//AB \(\Rightarrow\dfrac{AF}{AC}=\dfrac{BD}{BC}\) (Talet)
\(\Rightarrow\dfrac{AE}{AB}+\dfrac{AF}{AC}=\dfrac{CD}{BC}+\dfrac{BD}{BC}=\dfrac{BC}{BC}=1\left(dpcm\right)\)
Gọi K là trung điểm của CD
a: Xét ΔBDC có
M là trung điểm của BC
K là trung điểm của CD
Do đó: MK là đường trung bình
=>MK//BD
hay ID//MK
Xét ΔAMK có
I là trung điểm của AM
ID//MK
Do đó: D là trung điểm của AK
=>AD=DK=KC
=>AD=1/2DC
b: Xét ΔAMK có
I là trung điểm của AM
D là trung điểm của AK
Do đó: ID là đường trung bình
=>ID=MK/2
hay MK=2ID
Ta có: MK là đường trung bình của ΔBDC
nên MK=BD/2
=>BD/2=2ID
hay BD=4ID
Đúng thầy cho em like nhé !
a) Kẻ ��MN // ��BD, �∈��N∈AC.
��MN là đường trung bình trong △���△CBD
Suy ra �N là trung điểm của ��CD (1).
��IN là đường trung bình trong △���△AMN
Suy ra �D là trung điểm của ��AN (2).
Từ (1) và (2) suy ra ��=12��AD=21DC.
b) Có ��=12��ID=21MN; ��=12��MN=21BD, nên ��=��BD=ID.