tìm GTNN của biểu thức P = (x-22).(x-23) với x là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cứ mỗi khi kim giờ quay được 1 vòng thì kim phút quay được 12 vòng
Do đó kim giờ quay 5 vòng thì kim phút quay được: \(12.5=60\) vòng
Đặt \(x+9=n^2\) (với \(n>3;n\in N\))
\(\Leftrightarrow x=n^2-9\)
\(\Leftrightarrow x=\left(n-3\right)\left(n+3\right)\)
Nếu \(n-3\ne1\Rightarrow x\) có ít nhất 3 ước nguyên là \(n-3;n+3;\left(n-3\right)\left(n+3\right)\Rightarrow\) x không phải là số nguyên tố (loại)
\(\Rightarrow x\) là số nguyên tố khi \(n-3=1\Rightarrow n=4\)
\(\Rightarrow x=4^2-9=7\)
\(2a=3b;5b=7c\)
\(\Rightarrow\dfrac{a}{3}=\dfrac{b}{2};\dfrac{b}{7}=\dfrac{c}{5}\)
\(\Rightarrow\dfrac{a}{21}=\dfrac{b}{14};\dfrac{b}{14}=\dfrac{c}{10}\)
\(\Rightarrow\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}\)
\(\Rightarrow\dfrac{3a}{63}=\dfrac{7b}{98}=\dfrac{5c}{50}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{3a}{63}=\dfrac{7b}{98}=\dfrac{5c}{50}=\dfrac{3a-7b+5c}{63-98+50}=-\dfrac{30}{15}=-2\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{21}=-2\Leftrightarrow a=-42\\\dfrac{b}{14}=-2\Leftrightarrow b=-28\\\dfrac{c}{10}=-2\Leftrightarrow c=20\end{matrix}\right.\)
do A=2024 => \(\left|x+2023\right|=2024\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2023=2024\\x+2023=-2024\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2024-2023\\x=-2024-2023\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4047\end{matrix}\right.\)
vậy x \(\in\left\{-4047;1\right\}\)
\(1+\dfrac{7}{n\left(n+8\right)}=\dfrac{n^2+8n+7}{n\left(n+8\right)}=\dfrac{\left(n+1\right)\left(n+7\right)}{n\left(n+8\right)}\)
\(\Rightarrow P=\left(1+\dfrac{7}{1.\left(1+8\right)}\right)\left(1+\dfrac{7}{2.\left(2+8\right)}\right)\left(1+\dfrac{7}{3.\left(3+8\right)}\right)...\left(1+\dfrac{7}{50.\left(50+8\right)}\right)\)
\(=\left(\dfrac{2.8}{1.9}\right).\left(\dfrac{3.9}{2.10}\right).\left(\dfrac{4.10}{3.11}\right)...\left(\dfrac{51.57}{50.58}\right)\)
\(=\dfrac{2.3.4...51}{1.2.3...50}.\dfrac{8.9.10...57}{9.10.11...58}=\dfrac{51}{1}.\dfrac{8}{58}=\dfrac{204}{29}\)
Lời giải:
Nếu $x< 22$ thì $x-22< 0, x-23< 0\Rightarrow (x-22)(x-23)>0$
Nếu $x> 23$ thì $x-22>0, x-23>0\Rightarrow (x-22)(x-23)>0$
Nếu $x=22$ hoặc $x=23$ thì $(x-22)(x-23)=0$
Từ đây suy ra $P=(x-22)(x-23)$ nhận giá trị nhỏ nhất bằng 0 khi $x=22$ hoặc $x=23$.