K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2016

p,q là các số nguyên tố khác nhau => (p;q)=1

Áp dụng định lí Fermat nhỏ có: \(p^{q-1}\equiv1\)(mod q). Mà \(q^{p-1}\equiv0\)(mod q) 

=>\(p^{q-1}+q^{p-1}\equiv1-0\equiv1\) (mod q) =>\(p^{q-1}+q^{p-1}-1\equiv1-1\equiv0\) (mod q) 

=>\(p^{q-1}+q^{p-1}-1\) chia hết cho q (1)

Lại áp dụng định lí Fermat nhỏ có: \(q^{p-1}\equiv1\)(mod q). Mà \(q^{p-1}\equiv0\) (mod q)

=>\(p^{q-1}+q^{p-1}\equiv1-0\equiv1\)(mod q) =>\(p^{q-1}+q^{p-1}-1\equiv1-1\equiv0\) (mod q) 

=>\(p^{q-1}+q^{p-1}-1\) chia hết cho q (2)

Từ (1),(2) và (p;q)=1 => \(p^{q-1}+q^{p-1}-1\) chia hết cho pq (đpcm)

2 tháng 11 2016

Bài này mà sử dụng đồng dư thì đơn giản kinh khủng :)

Đặt \(A=p^{q-1}+q^{p-1}-1\)

Vì p,q là các số nguyên tố khác nhau nên \(\left(p;q\right)=1\)

Áp dụng định lý Fecma nhỏ có \(p^{q-1}\text{≡}1\left(modq\right)\)

Mà \(q^{p-1}\text{≡}0\left(modq\right)\)

\(\Rightarrow p^{q-1}+q^{p-1}-1\text{≡}1+0-1\text{≡}0\left(modq\right)\)

\(\Rightarrow A\text{⋮}q\)

Tương tự, vẫn áp dụng định lý Fecma nhỏ có \(q^{p-1}\text{≡}1\left(modp\right)\)

Mà \(p^{q-1}\text{≡}0\left(modp\right)\)

\(\Rightarrow p^{q-1}+q^{p-1}-1\text{≡}0+1-1\text{≡}0\left(modp\right)\)

\(\Rightarrow A\text{⋮}p\)

Có \(A\text{⋮}p\)và \(A\text{⋮}q\); mà \(\left(p;q\right)=1\) nên \(A\text{⋮}p.q\)

Vậy ...

Bạn có thể hiểu thêm về định lý Fecma : nếu a , b nguyên tố cùng nhau thì \(a^{b-1}\text{≡}1\left(modb\right)\)cũng như \(b^{a-1}\text{≡}1\left(moda\right)\)

24 tháng 8 2019

B= \(\frac{2\cdot2018}{1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+2018}}\)

Ta có: 

\(1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+2018}\)

\(=1+\frac{1}{\frac{3.2}{2}}+\frac{1}{\frac{3.4}{2}}+\frac{1}{\frac{4.5}{2}}+...+\frac{1}{\frac{2018.2019}{2}}\)

\(=1+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{2018.2019}\)

\(=\frac{2}{2}+2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2018.2019}\right)\)

\(=2\left(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2018}-\frac{1}{2019}\right)\)

\(=2\left(1-\frac{1}{2019}\right)=\frac{2.2018}{2019}\)

=> B= \(\frac{2\cdot2018}{1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+2018}}=\frac{2.2018}{\frac{2.2018}{2019}}=2019\)

12 tháng 12 2016

Từ đề bai ta có

\(\frac{1a\left(y+z\right)}{abc}=\frac{b\left(z+x\right)}{abc}=\frac{c\left(x+y\right)}{abc}\)

\(\Rightarrow\frac{y+z}{1bc}=\frac{z+x}{ca}=\frac{x+y}{ab}=\frac{x+y-z-x}{1ab-ca}=\frac{y-z}{a\left(b-c\right)}\)

Tương tự ta cũng tìm được cái dãy tỷ số đó 

\(=\frac{1z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\)

Từ đây ta có điều phải chứng minh

13 tháng 12 2016

Ta có:

\(a\left(y+z\right)=b\left(z+x\right)=c\left(x+y\right)\)

\(\Rightarrow\frac{a\left(y+z\right)}{abc}=\frac{b\left(z+x\right)}{abc}=\frac{c\left(x+y\right)}{abc}\)

\(\Rightarrow\frac{\left(y+z\right)}{bc}=\frac{\left(z+x\right)}{ac}=\frac{\left(x+y\right)}{ab}\)

\(\Rightarrow\frac{x+y-z-x}{ab-ac}=\frac{y+z-x-y}{bc-ab}=\frac{z+x-y-z}{ac-bc}\)

\(\Rightarrow\frac{y-z}{a\left(b-c\right)}=\frac{z-x}{b\left(c-a\right)}=\frac{x-y}{c\left(a-b\right)}\)

26 tháng 7 2019

Ta chứng minh trong 2003 số nguyên dương đã cho chỉ nhận nhiều nhất 4 giá tri khác nhau.

Thật vậy giả sử trong các số đã cho có nhiều hơn 4 chữ số khác nhau, giả sử \(a_1,a_2,a_3,a_4,a_5\)là 5 số khác nhau bất kì. Không mất tính tổng quát giả sử

\(a_1< a_2< a_3< a_4< a_5\)(1)

Theo đầu bài \(a_1a_2=a_3a_4\)(2)

Theo (1) không xảy ra \(a_1a_2=a_3a_4\)hoặc\(a_1a_3=a_2a_4.\)

Tương tự 4 số khác nhau \(a_1,a_2,a_3,a_5\)thì \(a_1a_5=a_2a_3\)(3).

Từ (2) và (3) suy ra \(a_4=a_5.\)Mâu thuẫn.

Vậy trong 2003 số nguyên dương đã cho không thể có hơn 4 số khác nhau. Mà 2003 = 4.500 + 3.

Do đó trong 2003 số tự nhiên dương đã cho luôn tìm được ít nhất 500 + 1 = 501 số bằng nhau.

26 tháng 7 2019

Bạn ơi bạn vô câu hỏi tương tự xem nhé

Học tốt

26 tháng 7 2019

Tham khảo nhé!

>>https://olm.vn/hoi-dap/detail/80507618602.html

21 tháng 6 2017

A B C M N D E

QUA B KẺ BE SONG SONG VỚI NC

TRONG TAM GIÁC AMN CÓ ĐƯỜNG PHÂN GIÁC CỦA GÓC A ĐỒNG THỜI LÀ ĐƯỜNG CAO

=> TAM GIÁC AMN CÂN TẠI A

=> GÓC AMN = GÓC ANM

DO BE SONG SONG VỚI AC

=> GÓC BEM = GÓC ANM

MÀ GÓC ANM = GÓC AMN

=> GÓC AMN = GÓC BEM

=> BE = BM

TA DỄ DÀNG CHỨNG MINH ĐƯỢC TAM GIÁC DBE = TAM GIÁC DCN ( G.C.G)

=> BE = CN

=> BM = CN

TA CÓ AM = AN = X

           BM = CN = Y

TA SẼ CÓ :

X + Y = AB = c

X - Y = AC = b

=> X = AM = \(\frac{b+c}{2}\)

=> Y = bm = \(\frac{c-b}{2}\)

( BM CÓ THỂ BẰNG b - c/ 2 phụ thuộc vào  AB VÀ AC)

22 tháng 6 2017

Hình tam giác TenDaGiac1: Polygon A, B, C Đoạn thẳng c: Đoạn thẳng [A, B] của Hình tam giác TenDaGiac1 Đoạn thẳng a: Đoạn thẳng [B, C] của Hình tam giác TenDaGiac1 Đoạn thẳng b: Đoạn thẳng [C, A] của Hình tam giác TenDaGiac1 Đoạn thẳng j: Đoạn thẳng [M, B] Đoạn thẳng k: Đoạn thẳng [M, N] Đoạn thẳng l: Đoạn thẳng [A, H] Đoạn thẳng n: Đoạn thẳng [B, K] A = (0.24, 5.9) A = (0.24, 5.9) A = (0.24, 5.9) B = (-1.84, 2.22) B = (-1.84, 2.22) B = (-1.84, 2.22) C = (6.84, 2) C = (6.84, 2) C = (6.84, 2) Điểm D: Trung điểm của a Điểm D: Trung điểm của a Điểm D: Trung điểm của a Điểm M: Giao điểm của h, i Điểm M: Giao điểm của h, i Điểm M: Giao điểm của h, i Điểm N: Giao điểm của h, b Điểm N: Giao điểm của h, b Điểm N: Giao điểm của h, b Điểm H: Giao điểm của g, k Điểm H: Giao điểm của g, k Điểm H: Giao điểm của g, k Điểm K: Giao điểm của m, k Điểm K: Giao điểm của m, k Điểm K: Giao điểm của m, k

Bài của Hiếu viết sai tên điểm. Cô trình bày bài này như sau:

Kẻ BK // AC ( K  thuộc MN)

Đặt H là giao điểm của phân giác trong góc A và MN.

Khi đó ta dễ dàng chứng minh được \(\Delta BDK=\Delta CDN\left(g-c-g\right)\Rightarrow BK=CN\left(1\right)\)

Xét tam giác AMN có AH là phân giác đồng thời đường cao nên nó là tam giác cân hay \(\widehat{AMN}=\widehat{ANM}\)

Lại do BK // AC nên \(\widehat{ANM}=\widehat{BKM}\) (đồng vị)

Vậy \(\widehat{AMN}=\widehat{BKM}\) hay tam giác BKM cân tại B. Suy ra BM  = BK (2)

Từ (1) và (2) suy ra BM = CN

Ta thấy AM = AB + BM = c + BM

            AN = AC - NC = b - NC

Cộng từng vế ta có : AM + AN = b + c hay 2AM = b + c

Vậy \(AM=\frac{b+c}{2}\) 

Khi đó MB = AM - AB \(=\frac{b+c}{2}-c=\frac{b-c}{2}\)  ( Với trường hợp b > c và ngược lại)

Tìm abcd nếu

4.abcd = dcba

2
8 tháng 7 2019

\(\overline{abcd};\overline{dcba}\)là số tự nhiên có bốn chữ số

=> \(a,d\ne0\)

Và vì: \(4.\overline{abcd}=\overline{dcba}\)

=> a<3

TH1: a=1

Khi đó ta có: \(4.\overline{1bcd}=\overline{dcb1}\)

Loại vì không tồn tại số nhân với 4 được số tự nhiên tận cùng là 1

TH2: a=2

Khi đó ta có: \(4.\overline{2bcd}=\overline{dcb2}\)

=> d=3 hoặc d=8

+) Với d =3 ta có:

\(4.\overline{2bc3}=\overline{3cb2}\)loại ( vì 4.2=8>3)

+) Với d=8

ta có: \(4.\overline{2bc8}=\overline{8cb2}\)

<=> \(4.\left(2000+b.100+c.10+8\right)=8000+c.100+b.10+2\)

<=> \(390b-60c+30=0\)

<=> \(13b-2c+1=0\)

<=> \(c=\frac{13b+1}{2}\)

=> b=1 và c=7

Vậy số tự nhiên cần tìm là: 2178 và 4x2178=8712

Cô ơi e có cách giải mới mong cô xem qua 

Số cần tìm có dạng \(\overline{abcd}\)

Ta có 4.\(\overline{abcd}=\overline{dcba}\Rightarrow\overline{dcba}⋮4\Rightarrow a\in\left\{0;1;4;6;8\right\}\)

Xét các trường hợp thấy \(a\in0\)và nếu \(a\ge4\)thì \(4.\overline{abcd}\ge4.4000>9999\ge\overline{dcba}\)

và a=2 =>\(\overline{abcd}=\overline{dcba}\ge4.2000=8000=>d\in\left\{8;9\right\}\)

Mà \(\overline{dcba}=4\overline{abcd}\Rightarrow4.d\)phải tận cùng bằng chữ số a.

Mặt khác :4.8=32;4.9=36=>d=8

Ta có \(\overline{dcba}=100.dc+ba=2.5.4.dc+ba⋮4\)

=>ba\(⋮\)4

Vì a\(⋮\)2 theo trên =>b\(\in\){1;3;5;7;9}

Xét các trường hợp của b

Nếu \(b\ge3\Rightarrow\overline{8cba}\ge4.2300=9200\)(vô lí )

Nếu b : 1=>\(\overline{8bc12}=4.\overline{2108}\)

=>8012+100c=4.2108+4.10.c

=>60c=420

=>c=420:60

=>c=7

Vậy \(\overline{abcd}=2178\)

2 tháng 9 2017

Bài 1:

Áp dụng TCDTSBN có:

\(\frac{a1-1}{9}=\frac{a2-2}{8}=...=\frac{a9-9}{1}=\frac{a1-1+a2-2+...+a9-9}{9+8+...+1}=\frac{\left(a1+...+a9\right)-\left(1+2+...+9\right)}{45}=\frac{90-45}{45}=1\)

\(\Rightarrow\frac{a1-1}{9}=1\Rightarrow a1=10\)

\(\frac{a2-2}{8}=1\Rightarrow a2=10\)

.....

\(\frac{a9-9}{1}=1\Rightarrow a9=10\)

Vậy a1=a2=...=a9=10

2,

a, \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}\Rightarrow\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}=\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}=4\)

=> x=6, y=8, z=10

b, \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\Rightarrow\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}=\frac{5z-25-3x+3-4y-12}{30-6-16}=\frac{\left(5x-3x-4y\right)-\left(25-3+12\right)}{8}=\frac{50-34}{8}=2\)

=> x-1/2 = 2 => x=5

y+3/4=2=>y=5

z-5/6=2=>z=17

2 tháng 9 2017

Bài 1 : Giải

a1−19=a2−28=a3−37=...=a9−91a1−19=a2−28=a3−37=...=a9−91
Theo tính chất dãy tỉ số bằng nhau →a1−19=a2−28=a3−37=...=a9−91=a1−1+a2−2+a3−3+a4−4+...+a9−99+8+7+...+3+2+1=(a1+a2+a3+...+a9)−4545=90−4545=1→a1−19=a2−28=a3−37=...=a9−91=a1−1+a2−2+a3−3+a4−4+...+a9−99+8+7+...+3+2+1=(a1+a2+a3+...+a9)−4545=90−4545=1
a1−1=9→a1=10a2−2=8→a2=10a3−3=7→a3=10...a9−9=1→a9=10a1−1=9→a1=10a2−2=8→a2=10a3−3=7→a3=10...a9−9=1→a9=10
Vậy a1=a2=a3=...=a9=10

3 tháng 7 2019

+) Để n lớn nhất => m lớn nhất

+) Để n thuộc N

=> \(\sqrt{m-174}\in N\)

\(\sqrt{m+34}\in N\)

Đặt m-174 =a^2 , m+34 =b^2 ( a, b thuộc N)

=> \(b^2-a^2=34+174=208\)

=> \(\left(b-a\right)\left(b+a\right)=208\) là số chẵn

=> b-a , b+a đồng thời là số chẵn và b+a>b-a

Vì n lớn nhất => a+b lớn nhất

Xét trường hợp: 

TH: \(\hept{\begin{cases}b-a=2\\b+a=104\end{cases}\Leftrightarrow}\hept{\begin{cases}b=53\\a=51\end{cases}}\)thử lại thấy thỏa mãn với m=2775 thay vào tính được n=53+51=104

Vậy n=104

24 tháng 5 2017

a. Do tam giác ABC cân có \(\widehat{BAC}=100^o\Rightarrow\widehat{ABC}=\widehat{ACB}=40^o\)

Từ đó cũng có \(\widehat{ACH}=\widehat{BCH}=20^o\)

Xét tam giác AHC ta thấy ngay \(\widehat{AHC}=180^o-\widehat{HAC}-\widehat{ACH}=60^o\)

Lấy I, J trên BC sao cho \(\widehat{CHI}=80^o;\widehat{CHJ}=60^o\)

Ta có \(\Delta HAC=\Delta HJC\left(g-c-g\right)\Rightarrow AH=HJ\)

\(\widehat{HJC}=\widehat{HAC}=100^o\Rightarrow\widehat{HJI}=80^o\)

Xét tam giác HIC có \(\widehat{HCI}=20^o;\widehat{CHI}=80^o\Rightarrow\widehat{HIC}=80^o\Rightarrow HC=IC\)

Xét tam giác HIJ có \(\widehat{HIJ}=\widehat{HJI}=80^o\Rightarrow HJ=HI\)

HIJ là góc ngoài tam giác BHI nên mà nó gấp đôi góc \(\widehat{HBI}\Rightarrow\) tam giác BHI cân tại I hay HI = BI.

Vậy thì BC = BI + IC = HI + HC = AH + HC (đpcm)

b. 

24 tháng 5 2017

cau b;ve diem K sao cho BC la trung truc cua MK sau do CM AK=AC bg phan chung