K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2017

Từ 23/7 -> 26/7 không phải là hết ngày 26 à cô ==''

Em lỡ kế hoạch rồi =="" còn câu 6 nữa định mai làm ==""

25 tháng 7 2017

Sao bài em chưa đc chấm hả cô

14 tháng 7 2017

Dễ thấy :

Với X , từ I2 lên I3 tăng đột ngột , vậy ion \(X^{2+}\) có cấu hình của một khí hiếm nên :

\(X:\left[Ar\right]4s^2\left(Ca\right)\)

Với Y , từ I4 lên I5 tăng đột ngột , vậy ion \(I^{4+}\)có cấu hình của một khí hiếm nên :

\(Y:\left[He\right]2s^22p^2\left(C\right)\)

Vậy ...

P/s : bài này mk có lm rồi :D

14 tháng 7 2017

thính cho mấy bạn COPIER à Đề Thi Môn Hóa 10 Kỳ Thi Olympic Truyền Thống 30/4 - Khoaluan.vn

7 tháng 7 2017

-các chí tuyến và vòng cực trùng nhau ở vĩ tuyến 45o Bắc và Nam (chí tuyến với vòng cực là một ).

-ngày , đêm vẫn tồn tại nhưng sự chênh lệch ngày , đêm ở các vĩ độ cao rất lớn .

-mùa vẫn tồn tại , 2 mùa vẫn trái ngược nhau giữa 2 bán cầu , sự trái ngược này lớn hơn hiện tại . Càng về 2 cực , mùa hè càng dài , mùa đông càng ngắn .

- ở vĩ độ 45o trở về 2 cực sẽ có 6 tháng ngày , 6 tháng đêm.

7 tháng 7 2017

- Thứ nhất, nếu trục Trái Đất nghiêng so với mặt phẳng quỹ đạo 1 góc là 45o, thì khi Trái Đất quay xung quanh Mặt Trời, các chí tuyến và vòng cực trùng nhau ở vĩ tuyến 45o Bắc và Nam (ở đây, chí tuyến với vòng cực là một )

- Thứ hai, ngày & đêm khi đó sẽ vẫn còn tồn tại nhưng sự chênh lệch ngày & đêm ở các vĩ độ cao rất lớn.

- Thứ ba, Nếu trục Trái Đất trùng hợp với mặt phẳng quỹ đạo (nằm trong mặt phẳng quỹ đạo), thì khi Trái Đất chuyển động tịnh tiến quanh Mặt Trời, trên bề mặt trái đất sẽ có hiện tượng các mùa ở khắp mọi nơi, nhưng sự thay đổi nhiệt độ giữa các mùa sẽ rất khốc liệt. Khi ta càng về hai cực thì "mùa hè càng dài, mùa đông càng ngắn".

- Thứ tư, lúc này ở vĩ độ 45o trở về hai cực Bắc và Nam sẽ có hiên tượng sau: "6 tháng ngày , 6 tháng đêm".

7 tháng 7 2017

Đặt \(D=\dfrac{\text{x}^2+a}{xy+a}\)

\(E=\dfrac{y^2+b}{yz+b}\)

\(F=\dfrac{z^2+c}{xz+c}\)

Dự đoán: Đẳng thức xảy ra khi: D=E=F=1

Áp dụng bđt AM_GM :

||bđt có được dùng ngược lại giống như đl Ta-let/ Py-ta-go ko??||

\(\dfrac{x^2+a}{yz+b}\cdot\dfrac{y^2+b}{xz+c}\cdot\dfrac{z^2+c}{xy+a}\ge1\)

\(\Leftrightarrow\dfrac{\text{x}^2+a}{xy+a}\cdot\dfrac{y^2+b}{yz+b}\cdot\dfrac{z^2+c}{xz+c}\ge1\) (*)

*Nhận xét: Giá trị của VT phụ thuộc vào x,y,z .

Trong 3 số x,y,z có ít nhất 1 số >/ các số còn lại => trong 3 đa thức D, E, F có ít nhất 1 đa thức >/ 1 với mọi x,y,z,a,b,c dương

\(\Rightarrow\) (*) đúng

Hay \(\dfrac{x^2+a}{yz+b}+\dfrac{y^2+b}{xz+c}+\dfrac{z^2+c}{xy+a}\ge3\) \(\forall x,y,z,a,b,c>0\)

Dấu "=" xảy ra khi D=E=F=1 , hay x=y=z

|| kết luận viết như nào đây........||

----------------------

Không biết có đúng không nữa, sai sót gì sư phụ góp ý cho con nhá..... nhớ góp ý nhẹ nhẹ thôi không là broken heart T_T!! Cảm ơn ạ

9 tháng 7 2017

Áp dụng BĐT AM-GM:

\(\sum\dfrac{x^2+a}{yz+b}\ge\sum\dfrac{2\left(x^2+a\right)}{y^2+z^2+2b}\)

Đặt \(x^2+y^2+y^2+a+b+c=m\)(m>0)

Áp dụng BĐT chebyshev:

\(\left[\dfrac{2\left(x^2+a\right)}{y^2+z^2+2b}+\dfrac{2\left(y^2+b\right)}{x^2+z^2+2c}+\dfrac{2\left(z^2+c\right)}{x^2+y^2+2a}\right]\left[\left(y^2+z^2+2b\right)+\left(x^2+z^2+2c\right)+\left(x^2+y^2+2a\right)\right]\ge6\left(x^2+y^2+z^2+a+b+c\right)\)

hay \(VT.2m\ge6m\Leftrightarrow VT\ge3\)

Điều này đúng khi ta có thứ tự sắp biến sau:

\(\left\{{}\begin{matrix}\dfrac{x^2+a}{y^2+z^2+2b}\ge\dfrac{y^2+b}{x^2+z^2+2c}\ge\dfrac{z^2+c}{x^2+y^2+2a}\\y^2+z^2+2b\le x^2+z^2+2c\le x^2+y^2+2a\end{matrix}\right.\)

Thật vậy, giả sử \(x\ge y\ge z\)\(a=max\left\{a,b,c\right\}\) thì điều trên đúng

P/s : dòng cuối em chém đó, sir giải quyết nốt đi,mắc khúc cuối :v

22 tháng 6 2017

Áp dụng BĐT cauchy:

\(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}\ge\dfrac{9}{xy+yz+zx}\)

\(M\ge\dfrac{1}{x^2+y^2+z^2}+\dfrac{9}{xy+yz+xz}=\dfrac{1}{x^2+y^2+z^2}+\dfrac{4}{2\left(xy+yz+xz\right)}+\dfrac{7}{xy+yz+zx}\)Áp dụng BĐT cauchy-schwarz:

\(\dfrac{1}{x^2+y^2+z^2}+\dfrac{4}{2\left(xy+yz+zx\right)}\ge\dfrac{\left(1+2\right)^2}{\left(x+y+z\right)^2}=9\)

\(\dfrac{7}{xy+yz+xz}\ge\dfrac{7}{\dfrac{1}{3}\left(x+y+z\right)^2}=21\)

\(\Rightarrow M\ge9+21=30\)

dấu = xảy ra khi \(x=y=z=\dfrac{1}{3}\)

11 tháng 8 2018

cô si cho đễ hiểu đi bn , cần gì phải cauchy s,. làm gì cho mệt

21 tháng 6 2017

a + 5 = 7c => 5 = 7c - a

Thay vào a3 + 5a2 + 21 = 7b ta được:

a3 + (7c - a).a2 + 21 = 7b

=> a3 + 7c.a2 - a3 + 21 = 7b

=> 7c.a2 + 21 = 7b

=> 7b - 7c.a2 = 21 (1)

=> 7c.(7b-c - a2) = 21 (*)

Từ (1) => 7b > 7c.a2 => b > c => 7b-c nguyên mà a2 nguyên nên 7b-c - a2 nguyên

Kết hợp với (*) => 21 chia hết cho 7c

\(7^c\ge7\) do c nguyên dương nên 7c = 7 => c = 1

Thay vào a + 5 = 7c ta được: a + 5 = 71 => a = 2

Thay c = 1; a = 2 vào (*) ta được: 71.(7b-1 - 22) = 21

=> 7b-1 - 4 = 3

=> 7b-1 = 7 => b - 1 = 1 => b = 2

Vậy a = b = 2; c = 1

21 tháng 6 2017

tú đâu rồi vào tick cho sư phụ you kìa :)))))))

21 tháng 1 2017

Áp dụng liên tiếp AM-GM và Cauchy-Schwarz ta có:

\(\begin{align*} \dfrac{a^2+ab+1}{\sqrt{a^2+3ab+c^2}}&\ge \dfrac{a^2+ab+1}{\sqrt{a^2+ab+c^2+\left (a^2+b^2 \right )}}\\ &=\dfrac{a^2+ab+1}{\sqrt{a^2+ab+1}}\\ &=\sqrt{a^2+ab+1}=\sqrt{a^2+ab+a^2+b^2+c^2}\\ &=\dfrac{1}{\sqrt{5}}\sqrt{\left ( \dfrac{9}{4}+\dfrac{3}{4}+1+1 \right )\left [\left ( a+\dfrac{b}{2} \right )^2+\dfrac{3b^2}{4}+a^2+c^2 \right ]}\\ &\ge \dfrac{1}{\sqrt{5}}\left [ \dfrac{3}{2}\left (a+\dfrac{b}{2} \right )+\dfrac{3}{4}b+a+c \right ]\\ &=\dfrac{1}{\sqrt{5}}\left ( \dfrac{5}{2}a+\dfrac{3}{2}b+c \right ) \end{align*}\)

Chứng minh tương tự, cộng lại ta có đpcm.

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

21 tháng 1 2017

bài này cuốn hút thật, lâu lắm ms thấy . xí bài này nhé nghĩ đã lát quay lại làm

5 tháng 6 2017

Đặt I là tâm đường tròn (C), khi đó \(I=\left(2;-1\right);R=1\)

Gọi khoảng cách từ I tới A là d, khi đó \(AB=AC=\sqrt{d^2-1}\)

Vậy \(d>1\)

Do tam giác ABI vuông tại B nên \(\dfrac{BC}{2}\) là độ dài đường cao tam giác. Suy ra \(BC=2.\dfrac{AB.BI}{AI}=2.\dfrac{\sqrt{d^2-1}.1}{d}=\dfrac{2\sqrt{d^2-1}}{d}\)

Vậy chu vi tam giác ABC là:

\(AB+AC+BC=2\sqrt{d^2-1}+\dfrac{2\sqrt{d^2-1}}{d}\)

\(\ge2.2\sqrt{\dfrac{d^2-1}{d}}=4\sqrt{d-\dfrac{1}{d}}\)

Vậy AB + BC + CA nhỏ nhất khi d nhỏ nhất hay khoảng cách từ I tới A nhỏ nhất.

Hay A chính là chân đường cao hạ từ I xuống đường thẳng (d)

Ta dễ dàng tìm được A(1;1).

2 tháng 6 2017

@phynit giúp em với thầy

15 tháng 5 2017

Áp dụng BĐT Côsi-Shaw ta có :

\(A=\dfrac{1}{\sqrt[3]{a+7b}}+\dfrac{1}{\sqrt[3]{b+7c}}+\dfrac{1}{\sqrt[3]{c+7a}}\ge\dfrac{9}{\sqrt[3]{a+7b}+\sqrt[3]{b+7c}+\sqrt[3]{c+7a}}\)

Đặt \(B=\sqrt[3]{a+7b}+\sqrt[3]{b+7c}+\sqrt[3]{c+7a}\)

Ta sẽ có : \(\dfrac{9}{B}\)

Mà : \(\dfrac{9}{B}\) đạt GTNN khi B lớn nhất .

Áp dụng BĐT Cô si , ta có :

\(\sqrt[3]{\left(a+7b\right).8.8}\le\dfrac{a+7b+8+8}{3}\) ( 1 )

Tương tự , ta có :

\(\sqrt[3]{\left(b+7c\right).8.8}\le\dfrac{b+7c+8+8}{3}\left(2\right)\)

\(\sqrt[3]{\left(c+7a\right).8.8}\le\dfrac{c+7a+8+8}{3}\) \(\left(3\right)\)

Cộng từng vế của \(\left(1\right),\left(2\right),\left(3\right)\) ta có :

\(4.\left(\sqrt[3]{a+7b}+\sqrt[3]{b+7c}+\sqrt[3]{c+7a}\right)\le\dfrac{8}{3}\left(a+b+c\right)+16\)

\(\Leftrightarrow4B\le24\)

\(\Leftrightarrow B\le6\)

Vậy \(Max_B=6\) \(\Leftrightarrow Min_A=\dfrac{9}{6}=\dfrac{3}{2}\)

Dấu " = " xảy ra khi \(a=b=c=1.\)

Sai thôi nha leuleu

16 tháng 5 2017

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow A\ge3\sqrt[3]{\dfrac{1}{\sqrt[3]{\left(a+7b\right)\left(b+7c\right)\left(c+7a\right)}}}\) (1)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\sqrt[3]{\left(a+7b\right)\left(b+7c\right)\left(c+7a\right)}\le\dfrac{8\left(a+b+c\right)}{3}=8\)

\(\Rightarrow\dfrac{1}{\sqrt[3]{\left(a+7b\right)\left(b+7c\right)\left(c+7a\right)}}\ge\dfrac{1}{8}\)

\(\Rightarrow3\sqrt[3]{\dfrac{1}{\sqrt[3]{\left(a+7b\right)\left(b+7c\right)\left(c+7a\right)}}}\ge3\sqrt[3]{\dfrac{1}{8}}=\dfrac{3}{2}\) (2)

Từ (1) và (2)

\(\Rightarrow A\ge\dfrac{3}{2}\)

\(\Rightarrow A_{min}=\dfrac{3}{2}\)

Dấu " = " xảy ra khi \(a=b=c=1\)

AH
Akai Haruma
Giáo viên
8 tháng 7 2017

Lời giải:

Ta có:

\(\frac{a}{a+bc}=\frac{a}{a(a+b+c)+bc}=\frac{a}{(a+b)(a+c)}\)

Thực hiện tương tự với các phân thức còn lại thu được:

\(\text{VT}=\frac{a(b+c)+b(a+c)+c(a+b)}{(a+b)(b+c)(c+a)}=\frac{2(ab+bc+ac)}{(a+b)(b+c)(c+a)}\) \((1)\)

Ta để ý bổ đề sau:

\((a+b)(b+c)(c+a)\geq \frac{8}{9}(a+b+c)(ab+bc+ac)\)

Chứng minh:

\(\prod(a+b)=(a+b+c)(ab+bc+ac)-abc\geq (a+b+c)(ab+bc+ac)-\frac{(a+b+c)(ab+bc+ac)}{9}=\text{VP}\)

Áp dụng vào bài toán:

\((a+b)(b+c)(c+a)\geq \frac{8}{9}(ab+bc+ac)\) \((2)\)

Từ \((1),(2)\Rightarrow \text{VT}\leq \frac{9}{4}\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{3}\)