Cho A=3^1+3^2+3^3+...+3^2016.chứng minh A chia hết 5
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
Ta có : A = 3^1 + 3^2 + 3^3 + ... + 3^2016
Số lượng số của A là :
( 2016 - 1 ) : 1 + 1 = 2016 ( số )
Do \(2016⋮4\)nên ta nhóm 4 số liền nhau thành 1 nhóm như sau :
A = 3^1 + 3^2 + 3^3 + ... = 3^2016
=> A = ( 3^1 + 3^2 + 3^3 + 3^4 ) + ( 3^5 + 3^6 + 3^7 + 3^8 ) + ... + ( 3^2013 + 3^2014 + 3^2015 + 3^2016 )
=> A = 3^1 . ( 1 + 3 + 3^2 + 3^3 ) + 3^5 . ( 1 + 3 + 3^2 + 3^3 ) + ...+ 3^2013 . ( 1 + 3 + 3^2 + 3^3 )
=> A = 3^1 . 40 + 3^5 . 40 + ... + 3^2013 . 40
=> A = 40 . ( 3^1 + 3^5 + ...+3^2013 ) \(⋮5\)( vì 40 \(⋮5\)) ( ĐPCM )
Tham khảo cách của mk nhé !
A = 3^1 + 3^2 + 3^3 + ... + 3^2016
= ( 3^1 + 3^2 + 3^3 + 3^4 ) + ( 3^5 + 3^6 + 3^7 + 3^8 ) +....+ ( 3^2013 + 3^2014 + 3^2015 + 3^2016 )
= 120 + 3^5 ( 3^1 + 3^2 + 3^3 + 3^4 ) + ... + 3^2013( 3^1 + 3^2 + 3^3 + 3^4 )
= 120 + 3^5 . 120 + ... + 3^1 . 120
= 120 . ( 1 + 3^5 + ... + 3^2013 ) chia hết cho 5
Vậy chia hết cho 5