K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2018

D nguyên <=> \(\frac{n+11}{2n-4}\) nguyên

<=> \(n+11⋮2n-4\)

=> \(2\left(n+11\right)⋮2n-4\)

=> \(2n+22⋮2n-4\)

=> \(\left(2n-4\right)+4+22⋮2n-4\)

=> \(\left(2n-4\right)+26⋮2n-4\)

         \(2n-4⋮2n-4\)

=> \(26⋮2n-4\)

=> \(2n-4\inƯ\left(26\right)\)

đến đây dễ r`, bn tự lm tiếp đi !

22 tháng 1 2024

a, Để \(\dfrac{n+1}{n-2}\) có giá trị là một số nguyên thì n + 1 ⋮ n - 2

=> (n - 2) + 3 ⋮ n - 2

 Vì (n - 2) ⋮ n - 2 nên 3 ⋮ n - 2

=> n - 2 ∈ Ư(3) ∈ {-3;-1;1;3}

 => n ∈ {-1;1;3;5}

b, Để \(\dfrac{4n+5}{2n-1}\) có giá trị là một số nguyên thì 4n + 5 ⋮ 2n - 1

=> (4n - 2) + 7 ⋮ 2n - 1

=> 2(2n - 1) + 7 ⋮ 2n - 1

 Vì 2(2n - 1) ⋮ 2n -1 nên 7 ⋮ 2n - 1

=> 2n - 1 ∈ Ư(7) ∈ {-7;-1;1;7}

=> n ∈ {-3;0;1;4}

29 tháng 4 2017

2n\(\ne\) 0

2n=0

n=0/2=0

=>n\(\ne\) 2 thì 4/2n là phân số

29 tháng 4 2017

để 4/2n là số nguyên thi 4\(⋮\) 2n

=>2n\(\in\) Ư (4)

2n=1

n=1/2 loại

2n=2

n=2/2=1 chọn

2n=4

n=4/2=2 chọn

7 tháng 11 2022

Bạn Tham Khảo:

loading...

28 tháng 2 2023

N=-3

Để A là số nguyên thì 2n+8+2013 chia hết cho n+4

=>\(n+4\in\left\{\text{1;3;11;33;61;183;671;2013};-1;-3;-11;-33;-61;-183;-671;-2013\right\}\)

=>\(n\in\left\{-3;-1;7;29;57;179;667;2009;-5;-7;-15;-37;-65;-187;-675;-2017\right\}\)

12 tháng 11 2017

a: Để A là phân số thì n-2<>0

=>n<>2

Khi n=-2 thì \(A=\dfrac{2\cdot\left(-2\right)+1}{-2-2}=\dfrac{-3}{-4}=\dfrac{3}{4}\)

b: Để A nguyên thì 2n+1 chia hết cho n-2

=>2n-4+5 chia hết cho n-2

=>\(n-2\in\left\{1;-1;5;-5\right\}\)

=>\(n\in\left\{3;1;7;-3\right\}\)

23 tháng 9 2015

A=\(\frac{3n+9}{n-4}\)=\(\frac{3\left(n-4\right)+12+9}{n-4}=\frac{3\left(n-4\right)+21}{n-4}\)
Vì n-4 : hết cho n-4 => 3(n-4) chia hết cho n-4=> để A nguyên => 21 chia hết cho n-4
n-4 thuộc Ư(21)=> n-4 thuộc {-21;-7;-3;-1;1;3;7;21} =>n thuộc {-17;-3;1;3;5;7;25} 

21 tháng 3 2016

tsfđgggggggggg

23 tháng 8 2021

cứu mik vớiiiiiiiiii

23 tháng 8 2021

a. ĐK : \(n\ne-4\) 

\(A=\frac{n+1}{n+4}=\frac{n+4-3}{n+4}=1-\frac{3}{n+4}\)

\(\Rightarrow n+4\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

n + 41-13-3
n-3-5-1-7

b, ĐK : \(n\ne-1\)

 \(B=\frac{3n-1}{n+1}=\frac{3\left(n+1\right)-4}{n+1}=3-\frac{4}{n+1}\)

\(\Rightarrow n+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

n + 11-12-24-4
n0-21-33-5

c,ĐK : \(n\ne\frac{1}{2}\) 

\(C=\frac{6n+5}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=3+\frac{8}{2n-1}\)

\(\Rightarrow2n-1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

2n - 11-12-24-48-8
n103/2(loại)-1/2(loại)5/2(loại)-3/2(loại)9/2(loại)-7/2(loại)