cho hình thang ABCD ( AB song song với CD) biết rằng tia phân giác của góc C đi qua trung điểm của AB .CMinh rằng:
A, tam giác BMC vuông
B, BC =AB+CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi tia phân giác góc C là CM và N là trung điểm của BC.
Do MN là đường trung bình của hình thang ABCD nên AB // MN // DC.
Suy ra \(\widehat{NMC}=\widehat{NCM}\).
Do MC là tia phân giác góc C nên \(\widehat{MND}=\widehat{NCM}\).
Suy ra \(\widehat{NMC}=\widehat{NCM}\).
Vậy tam giác NMC cân tại N hay MN = NC.
mà N là trung điểm của BC nên BN = NC.
Suy ra BN = MN = NC. Vậy tam giác MBC cân tại M.
b) Theo tính chất của đường trung bình của tam giác 2MN = AB + DC.
Mà BC = BN + NC = 2NC = 2MN.
Suy ra BC = AB + CD.
gọi giao của AM và CD là K
ta chứng minh tam giac ADK cân tại D
dễ dàng chứng minh tam giác ABM= tam giác KCM
(do AM=MK(gt), gócAMB=gócCMK(đối đỉnh), góc ABM=góc MCK(do AB//CD))
từ đó suy ra AM=Mk
mà DM là phân giác nên tam giác ADK cân tại D
từ đó góc DAM=DKM=MAB
nen AM là phân giác góc A
a: Xét ΔABE và ΔFCE có
góc EBA=góc ECF
EB=EC
góc BEA=góc CEF
=>ΔABE=ΔFCE
=>EA=EF
=>E là trung điểm của AF
b: Xét ΔDAF có
DE vừa là phân giác, vừa là trung tuyến
=>ΔDAF cân tại D
=>DA=DF=DC+CF=DC+AB
c: góc BAE=góc AFD
=>góc BAE=góc DAE
=>AE là phân giác góc DAB
a) HS tự tìm
b) Sử dụng các cặp góc so le trong của hai đường thẳng song song và tính chất tia phân giác.
c) Suy ra từ b)
ádfgh