K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2017

A B N C D M
a) Gọi tia phân giác góc C là CM và N là trung điểm của BC.
Do MN là đường trung bình của hình thang ABCD nên AB // MN // DC.
Suy ra \(\widehat{NMC}=\widehat{NCM}\).
Do MC là tia phân giác góc C nên \(\widehat{MND}=\widehat{NCM}\).
Suy ra \(\widehat{NMC}=\widehat{NCM}\).
Vậy tam giác NMC cân tại N hay MN = NC.
mà N là trung điểm của BC nên BN = NC.
Suy ra BN = MN = NC. Vậy tam giác MBC cân tại M.
b) Theo tính chất của đường trung bình của tam giác 2MN = AB + DC.
Mà BC = BN + NC = 2NC = 2MN.
Suy ra BC = AB + CD.

25 tháng 8 2018

ádfgh

18 tháng 9 2021

Kẻ F la trung điểm AD

\(\left\{{}\begin{matrix}AF=FD\\BE=EC\end{matrix}\right.\Rightarrow EF\) là đtb hthang ABCD

\(\Rightarrow EF//AB//CD;2EF=AB+CD\left(1\right)\)

\(\left\{{}\begin{matrix}\widehat{D_2}=\widehat{E_1}\left(so.le.trong\right)\\\widehat{D_1}=\widehat{D_2}\left(t/c.phân.giác\right)\end{matrix}\right.\Rightarrow\widehat{D_1}=\widehat{E_1}\Rightarrow\Delta DEF.cân\Rightarrow DF=EF\)

Mà \(DF=\dfrac{1}{2}AD\left(F.là.trung.điểm.AD\right)\Rightarrow EF=\dfrac{1}{2}AD\)

\(\Rightarrow2EF=AD\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow AD=AB+CD\)

\(2,EF=\dfrac{1}{2}AD\Rightarrow\Delta AED\) vuông tại E

\(\Rightarrow\widehat{A_1}+\widehat{D_1}=90^0\)

Mà \(\widehat{D_1}+\widehat{E_2}=\widehat{E_1}+\widehat{E_2}=90^0\)

\(\Rightarrow\widehat{A_1}=\widehat{E_2}\left(3\right)\)

Mà \(AB//EF\Rightarrow\widehat{E_2}=\widehat{A_2}\left(4\right)\)

\(\left(3\right)\left(4\right)\Rightarrow\widehat{A_1}=\widehat{A_2}\Rightarrow AE\) là p/g \(\widehat{DAB}\)