cách tính giá trị trung tâm trong bảng "tần số ghép lớp"
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Bảng phân bố tần số và tần suất:
Nhóm cá thứ I | Tần số | Tần suất |
---|---|---|
[630;635) | 1 | 4,2% |
[635;640) | 2 | 8,3% |
[640;645) | 3 | 12,5% |
[645;650) | 6 | 25% |
[650;655] | 12 | 50% |
Cộng | 24 | 100% |
b) Bảng phân bố tần số và tần suất:
Nhóm cá thứ I | Tần số | Tần suất |
---|---|---|
[638;642) | 5 | 18,52% |
[642;646) | 9 | 33,33% |
[646;650) | 1 | 3,7% |
[650;654) | 12 | 44,45% |
Cộng | 27 | 100% |
c) Biểu đồ tần suất hình cột:
- Đường gấp khúc tần suất
d) Biểu đồ tần số
- Đường gấp khúc tần số
e) * Xét bảng phân bố ở câu a)
- Số trung bình:
- Phương sai:
- Độ lệch chuẩn:
* Xét bảng phân bố ở câu b):
- Số trung bình:
- Phương sai:
- Độ lệch chuẩn:
Nhận thấy s2 < s1 nên nhóm cá thứ hai có khối lượng đồng đều hơn.
a) Bảng phân bố tần số và tần suất:
b) Bảng phân bố tần số và tần suất:
c) Biểu đồ tần suất hình cột:
- Đường gấp khúc tần suất
d) Biểu đồ tần số
- Đường gấp khúc tần số
e) Xét bảng phân bố ở câu a)
- Số trung bình cộng:
Từ đó ta thấy nhóm cá thứ 2 có khối lượng đồng đều hơn.
Dựa vào bảng phân bố tần số, tần suất ghép lớp ta có:
a) Giá trị của * là:
Đáp án: B
b) Giá trị của ** là:
Đáp án C
a), b) Số trung bình cộng của nhóm cá thứ nhất:
.(4x0,7 + 6x0,9 + 6x1.1 + 4x1,3) = 1
Phương sai: .(4x0,72 + 6x0,92 + 6x1,12 + 4x1,32) – 1 = 0,042
Độ lệch chuẩn: Sx = 0,2
Đối với nhóm cá thứ hai:
Số trung bình: .(3x0,6 + 4x0,8 + 6x1 + 4x1,2 + 3x1,4) = 1
Phương sai: .(3x0,62 + 4x0,82 + 6x12 + 4x1,22 + 3x1,42) – 1 = 0,064
Độ lệch chuẩn: Sx = ≈ 0,25.
c) Ta thấy = 1, trọng lượng trung bình hai nhóm cá bằng nhau nhưng < chứng tỏ mức độ phân tán các giá trị so với giá trị trung bình của nhóm cá thứ hai lớn hơn. Nghĩa là khối lượng nhóm cá thứ nhất đồng đều hơn nhóm cá thứ hai.
a), b) Số trung bình cộng của nhóm cá thứ nhất:
.(4x0,7 + 6x0,9 + 6x1.1 + 4x1,3) = 1
Phương sai: .(4x0,72 + 6x0,92 + 6x1,12 + 4x1,32) – 1 = 0,042
Độ lệch chuẩn: Sx = 0,2
Đối với nhóm cá thứ hai:
Số trung bình: .(3x0,6 + 4x0,8 + 6x1 + 4x1,2 + 3x1,4) = 1
Phương sai: .(3x0,62 + 4x0,82 + 6x12 + 4x1,22 + 3x1,42) – 1 = 0,064
Độ lệch chuẩn: Sx = ≈ 0,25.
c) Ta thấy = 1, trọng lượng trung bình hai nhóm cá bằng nhau nhưng < chứng tỏ mức độ phân tán các giá trị so với giá trị trung bình của nhóm cá thứ hai lớn hơn. Nghĩa là khối lượng nhóm cá thứ nhất đồng đều hơn nhóm cá thứ hai.
a) Số trung bình của nhóm cá mè thứ nhất:
Số trung bình của nhóm cá mè thứ hai:
b) Phương sai của bảng phân bố khối lượng của nhóm cá mè thứ 1:
Phương sai của bảng phân bố khối lượng của nhóm cá mè thứ 2:
c) Nhận xét: s12 < s22 nên nhóm cá thứ nhất có khối lượng đồng đều hơn.
Cân nặng của các học sinh lớp 10A và 10B trường Trung học phổ thông L.
Lớp cân nặng (kg) | Tần số | |
10A | 10B | |
[30;36) | 2,63 | 4,35 |
[36;42) | 5,26 | 15,22 |
[42;48) | 13,16 | 26,08 |
[48;54) | 39,48 | 28,26 |
[54;60) | 23,68 | 15,22 |
[60;66] | 15,79 | 10,87 |
Cộng | 100 (%) | 100 (%) |