K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2018

Câu hỏi của Wang Jum Kai - Toán lớp 6 - Học toán với OnlineMath

7 tháng 4 2019

C:D ko phả STN nhé

AH
Akai Haruma
Giáo viên
18 tháng 6 2019

Lời giải:

\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+....+\frac{1}{99.100}\)

\(=\frac{2-1}{1.2}+\frac{4-3}{3.4}+\frac{6-5}{5.6}+...+\frac{100-99}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{99}-\frac{1}{100}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)

\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

Mặt khác:

\(151B=\frac{51+100}{51.100}+\frac{52+99}{52.99}+....+\frac{99+52}{99.52}+\frac{100+51}{100.51}\)

\(=\frac{1}{100}+\frac{1}{51}+\frac{1}{99}+\frac{1}{52}+....+\frac{1}{52}+\frac{1}{99}+\frac{1}{51}+\frac{1}{100}\)

\(=\left(\frac{1}{100}+\frac{1}{99}+....+\frac{1}{52}+\frac{1}{51}\right)+\left(\frac{1}{51}+\frac{1}{52}+....+\frac{1}{100}\right)\)

\(=2\left(\frac{1}{51}+\frac{1}{52}+....+\frac{1}{100}\right)=2A\)

\(\Rightarrow \frac{A}{B}=\frac{151}{2}\)

AH
Akai Haruma
Giáo viên
20 tháng 6 2019

Lời giải:

\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+....+\frac{1}{99.100}\)

\(=\frac{2-1}{1.2}+\frac{4-3}{3.4}+\frac{6-5}{5.6}+...+\frac{100-99}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{99}-\frac{1}{100}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)

\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

Mặt khác:

\(151B=\frac{51+100}{51.100}+\frac{52+99}{52.99}+....+\frac{99+52}{99.52}+\frac{100+51}{100.51}\)

\(=\frac{1}{100}+\frac{1}{51}+\frac{1}{99}+\frac{1}{52}+....+\frac{1}{52}+\frac{1}{99}+\frac{1}{51}+\frac{1}{100}\)

\(=\left(\frac{1}{100}+\frac{1}{99}+....+\frac{1}{52}+\frac{1}{51}\right)+\left(\frac{1}{51}+\frac{1}{52}+....+\frac{1}{100}\right)\)

\(=2\left(\frac{1}{51}+\frac{1}{52}+....+\frac{1}{100}\right)=2A\)

\(\Rightarrow \frac{A}{B}=\frac{151}{2}\)

30 tháng 4 2015

\(C=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{97.98}+\frac{1}{99.100}\)

\(C=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{99}-\frac{1}{100}\)

\(C=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{98}+\frac{1}{100}\right)\)

\(C=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(C=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{99}+\frac{1}{100}\right)-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{50}\)

\(C=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(D=\frac{1}{51.100}+\frac{1}{52.99}+\frac{1}{53.98}+...+\frac{1}{99.52}+\frac{1}{100.51}\)

\(D=\frac{1}{151}.\left(\frac{151}{51.100}+\frac{151}{52.99}+\frac{151}{53.98}+...+\frac{151}{99.52}+\frac{151}{100.51}\right)\)

\(D=\frac{1}{151}.\left(\frac{1}{100}+\frac{1}{51}+\frac{1}{99}+\frac{1}{52}+...+\frac{1}{52}+\frac{1}{99}+\frac{1}{51}+\frac{1}{100}\right)\)

\(D=\frac{1}{151}.\left(\frac{2}{100}+\frac{2}{99}+...+\frac{2}{51}\right)\)

\(D=\frac{2}{151}.\left(\frac{1}{100}+\frac{1}{99}+...+\frac{1}{51}\right)\)

\(\Rightarrow C:D=\frac{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}{\frac{2}{151}.\left(\frac{1}{100}+\frac{1}{99}+...+\frac{1}{51}\right)}\)

\(\Rightarrow C:D=\frac{151}{2}=75\frac{1}{2}\)

 

4 tháng 4 2016

Khó hiểu vậy ạ, giảng kĩ đc ko bạn :)

23 tháng 8 2019

a) \(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}< 1\)

\(\Rightarrow A< 1\)

23 tháng 8 2019

b) \(B=\frac{1}{3}+\left(\frac{1}{3}\right)^2+...+\left(\frac{1}{3}\right)^{100}\)

\(\Rightarrow3B=1+\frac{1}{3}+...+\left(\frac{1}{3}\right)^{99}\)

\(\Rightarrow3B-B=1-\left(\frac{1}{3}\right)^{100}\)

\(\Rightarrow2B=1-\left(\frac{1}{3}\right)^{100}< 1\)

\(\Rightarrow2B< 1\)

\(\Rightarrow B< \frac{1}{2}\)

9 tháng 8 2020

Đặt B = \(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)

\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

Đặt C = \(\frac{1}{51.100}+\frac{1}{52.99}+...+\frac{1}{75.76}\)(sửa lại đề)

=> 151C = \(\frac{151}{51.100}+\frac{151}{52.99}+...+\frac{151}{75.76}\)

=> 151C =\(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)

=> C = \(\frac{\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}}{151}\)

Khi A = B : C 

\(\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\right):\left(\frac{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}{151}\right)=151\)

Vậy A = 151

26 tháng 6 2019

\(\frac{1}{1.2}+\frac{1}{3.4}+......+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{3}-....+\frac{1}{49}-\frac{1}{50}=\left(1+\frac{1}{3}+....+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{50}\right)=\left(1+\frac{1}{2}+.....+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)=\left(1+\frac{1}{2}+....+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{25}\right)=\frac{1}{26}+\frac{1}{27}+....+\frac{1}{50}\left(đpcm\right)\)

\(theocaua\Rightarrow A=\frac{1}{26}+\frac{1}{27}+......+\frac{1}{50}>\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\left(5sohang\right)+\frac{1}{40}+\frac{1}{40}+....+\frac{1}{40}\left(10sohang\right)+\frac{1}{50}+\frac{1}{50}+....+\frac{1}{50}\left(10sohang\right)=\frac{1}{4}+\frac{1}{5}+\frac{1}{6}=\frac{37}{60}>\frac{35}{60}=\frac{7}{12}\left(1\right)\)

\(A=\frac{1}{26}+\frac{1}{27}+....+\frac{1}{50}< \frac{1}{25}+\frac{1}{25}+...+\frac{1}{25}\left(5sohang\right)+\frac{1}{30}+\frac{1}{30}+....+\frac{1}{30}\left(10sohang\right)+\frac{1}{40}+\frac{1}{40}+.....+\frac{1}{40}\left(10sohang\right)=\frac{1}{4}+\frac{1}{3}+\frac{1}{5}=\frac{47}{60}< \frac{5}{6}=\frac{50}{60}\left(2\right)\) \(\left(1\right);\left(2\right)\Rightarrow\frac{7}{12}< A< \frac{5}{6}\)

25 tháng 8 2019

bạn vào câu hỏi tương tự nha

25 tháng 8 2019

Trước hết ta biến đổi A thành \(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)

Do đó : \(A=\left[\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}\right]+\left[\frac{1}{76}+\frac{1}{77}+...+\frac{1}{100}\right]\)

Ta có : \(\frac{1}{51}>\frac{1}{52}>...>\frac{1}{75},\frac{1}{76}>\frac{1}{77}>...>\frac{1}{100}\)nên

\(A>\frac{1}{75}\cdot25+\frac{1}{100}\cdot25=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)

\(A< \frac{1}{51}\cdot25+\frac{1}{76}\cdot25< \frac{1}{50}\cdot25+\frac{1}{75}\cdot25=\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)

Vậy \(\frac{7}{12}< A< \frac{5}{6}\)

29 tháng 6 2021

Ai giúp đi, làm ơnnnnnnnnnnnnnnnnnnn

29 tháng 6 2021

\(B=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(B=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)

\(B=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(B< \frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\)

\(B< \frac{50}{60}\Leftrightarrow B< \frac{5}{6}\)