Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+....+\frac{1}{99.100}\)
\(=\frac{2-1}{1.2}+\frac{4-3}{3.4}+\frac{6-5}{5.6}+...+\frac{100-99}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{99}-\frac{1}{100}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)
\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
Mặt khác:
\(151B=\frac{51+100}{51.100}+\frac{52+99}{52.99}+....+\frac{99+52}{99.52}+\frac{100+51}{100.51}\)
\(=\frac{1}{100}+\frac{1}{51}+\frac{1}{99}+\frac{1}{52}+....+\frac{1}{52}+\frac{1}{99}+\frac{1}{51}+\frac{1}{100}\)
\(=\left(\frac{1}{100}+\frac{1}{99}+....+\frac{1}{52}+\frac{1}{51}\right)+\left(\frac{1}{51}+\frac{1}{52}+....+\frac{1}{100}\right)\)
\(=2\left(\frac{1}{51}+\frac{1}{52}+....+\frac{1}{100}\right)=2A\)
\(\Rightarrow \frac{A}{B}=\frac{151}{2}\)
Lời giải:
\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+....+\frac{1}{99.100}\)
\(=\frac{2-1}{1.2}+\frac{4-3}{3.4}+\frac{6-5}{5.6}+...+\frac{100-99}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{99}-\frac{1}{100}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)
\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
Mặt khác:
\(151B=\frac{51+100}{51.100}+\frac{52+99}{52.99}+....+\frac{99+52}{99.52}+\frac{100+51}{100.51}\)
\(=\frac{1}{100}+\frac{1}{51}+\frac{1}{99}+\frac{1}{52}+....+\frac{1}{52}+\frac{1}{99}+\frac{1}{51}+\frac{1}{100}\)
\(=\left(\frac{1}{100}+\frac{1}{99}+....+\frac{1}{52}+\frac{1}{51}\right)+\left(\frac{1}{51}+\frac{1}{52}+....+\frac{1}{100}\right)\)
\(=2\left(\frac{1}{51}+\frac{1}{52}+....+\frac{1}{100}\right)=2A\)
\(\Rightarrow \frac{A}{B}=\frac{151}{2}\)
\(C=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{97.98}+\frac{1}{99.100}\)
\(C=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{99}-\frac{1}{100}\)
\(C=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{98}+\frac{1}{100}\right)\)
\(C=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(C=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{99}+\frac{1}{100}\right)-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{50}\)
\(C=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(D=\frac{1}{51.100}+\frac{1}{52.99}+\frac{1}{53.98}+...+\frac{1}{99.52}+\frac{1}{100.51}\)
\(D=\frac{1}{151}.\left(\frac{151}{51.100}+\frac{151}{52.99}+\frac{151}{53.98}+...+\frac{151}{99.52}+\frac{151}{100.51}\right)\)
\(D=\frac{1}{151}.\left(\frac{1}{100}+\frac{1}{51}+\frac{1}{99}+\frac{1}{52}+...+\frac{1}{52}+\frac{1}{99}+\frac{1}{51}+\frac{1}{100}\right)\)
\(D=\frac{1}{151}.\left(\frac{2}{100}+\frac{2}{99}+...+\frac{2}{51}\right)\)
\(D=\frac{2}{151}.\left(\frac{1}{100}+\frac{1}{99}+...+\frac{1}{51}\right)\)
\(\Rightarrow C:D=\frac{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}{\frac{2}{151}.\left(\frac{1}{100}+\frac{1}{99}+...+\frac{1}{51}\right)}\)
\(\Rightarrow C:D=\frac{151}{2}=75\frac{1}{2}\)
Khó hiểu vậy ạ, giảng kĩ đc ko bạn :)