giải hệ phương trình
x=y2-y+1
y=x2-x+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x + m + 1 y = 1 4 x − y = − 2 ⇔ y = 4 x + 2 x + m + 1 4 x + 2 = 1 ⇔ y = 4 x + 2 x + 4 x m + 1 + 2 m + 1 = 1 ⇔ y = 4 x + 2 x 4 m + 5 = − 2 m + 1
Nếu m = − 5 4 ⇒ 0 x = 3 2 (vô lý)
Nếu m ≠ − 5 4 ⇒ x = − 2 m − 2 4 m + 5 ⇒ y = 4 x + 2 = 6 4 m + 5
Theo bài ra: x 2 + y 2 = 1 4 ⇒ − 2 m − 1 4 m + 5 2 + 6 4 m + 5 2 = 1 4
⇔ 4 ( 4 m 2 + 4 m + 1 + 36 ) = 16 m 2 + 40 m + 25 ⇔ 24 m = 124 ⇔ m = 41 8
Đáp án:A
Trừ vế cho vế phương trình (1) cho (2) ta được:
x 2 + y 2 − y = − 1 ⇔ x 2 + y 2 − y + 1 = 0
Ta có:
x 2 ≥ 0 , ∀ x y 2 − y + 1 = y − 1 2 2 + 3 4 > 0 , ∀ y ⇒ x 2 + y 2 − y + 1 > 0 , ∀ x , y
Do đó phương trình x 2 + y 2 − y + 1 = 0 vô nghiệm
Vậy không tồn tại giá trị của xy
Đáp án cần chọn là: D
+) Xét y = 0 hệ phương trình đã cho trở thành x 2 + 1 = 0 x 2 + 1 x − 2 = 0 (vô lý)
+) Xét y ≠ 0 chia các vế của từng phương trình cho y ta được:
x 2 + 1 y + y + x = 4 x 2 + 1 y y + x − 2 = 1
Đặt x 2 + 1 y = a y + x − 2 = b
⇒ a + b = 2 a b = 1 ⇔ a = 2 − b a ( 2 − a ) = 1 ⇔ b = 2 − a a 2 − 2 a + 1 = 0 ⇔ b = 2 − a a − 1 2 = 0 ⇔ a = b = 1 ⇔ x 2 + 1 y = 1 y + x − 2 = 1 ⇔ y = x 2 + 1 x + y = 3 ⇔ y = x 2 + 1 x + x 2 + 1 = 3 ⇔ y = x 2 + 1 x 2 + x − 2 = 0 ⇔ y = x 2 + 1 x − 1 x + 2 = 0 ⇔ y = x 2 + 1 x = 1 x = − 2 ⇔ x = 1 y = 2 ( t m ) x = − 2 y = 5 ( t m )
Đáp án:D
Hệ phương trình có đúng 1 nghiệm khi phương trình (∗) có đúng 1 nghiệm
Đáp án cần chọn là: C
\(\left\{{}\begin{matrix}x+y=1\\2x-y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+2y=2\\2x-y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\\left(2x-2x\right)+\left(2y+y\right)=2-8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\3y=-6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\y=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=1\\y=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-2\end{matrix}\right.\)
Vậy hệ pt có nghiệm duy nhất \(\left(x;y\right)=\left(3;-2\right)\)
x - y = y^2 - y + 1 - x^2 + x - 1 = y^2 - y -x^2 + x
=> x - y = y^2 - x^ 2 - y + x
=> x - y + y -x = ( y -x )( y + x)
=> 0 = ( y+x)(y- x)
=> x + y = 0 và x - y = 0
=> x = y = 0