Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\hept{\begin{cases}\left(x-y\right)^2=\left(5-2xy\right)^2\\\left(x+y\right)^2-2xy+xy=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-4xy=25+4x^2y^2-20xy\\\left(x+y\right)^2-xy=7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2=25+4x^2y^2-16xy\\\left(x+y\right)^2=7+xy\end{cases}}\)
\(\Rightarrow25+4x^2y^2-16xy=7+xy\)
\(\Leftrightarrow4x^2y^2-17xy+18=0\)
\(\Leftrightarrow xy=\frac{9}{4}\) hoặc \(xy=2\)
Từ đó tính đc x+y dễ dàng tìm được các giá trị x và y
b) Câu hỏi của Huỳnh Minh Nghĩa - Toán lớp 9 - Học toán với OnlineMath
a)\(3^x-y^3=1\)
- Nếu x<0 suy ra y không nguyên
- Nếu x=0 => y=0
- Nếu x=1 =>y không nguyên
- Nếu x=2 =>y=2
- Nếu x>2 \(pt\Rightarrow3^x=y^3+1\left(x>2\right)\Rightarrow y^3>9\)
Ta suy ra \(y^3+1⋮9\Rightarrow y^3:9\) dư -1
\(\Rightarrow y=9k+2\) hoặc \(y=9k+5\) hoặc \(y=9k+8\) (k nguyên dương) (1)
Mặt khác ta cũng có \(y^3+1⋮3\) nên \(y=3m+2\) (m nguyên dương)
Từ (1) và (2) suy ra vô nghiệm
Vậy pt có 2 nghiệm nguyên là (0;0) và (2;2)
b)Xét .... ta dc x=y=0 hoặc x=1 và y=2
c)Xét.... x=y=0 hoặc x=0 và y=-1 hoặc x=-1 và y=0 hoặc x=y=-1
Hệ có nghiệm duy nhất khi và chỉ khi \(\frac{m-1}{2}\ne\frac{-m}{-1}\Leftrightarrow m\ne-1\)
Xét m=0 thì x=1, y=-3 --> thỏa mãn
Xét m khác 0 thì nhân 2 vế của đẳng thức thứ 2 cho m ---> \(\hept{\begin{cases}\left(m-1\right)x-my=3m-1\\2mx-my=m^2+5m\end{cases}}\)
Lấy đẳng thức 2 trừ đẳng thức 1 vế theo vế--> Dễ dàng tính được x=m+1, y=m-3 ---> thế vào điều kiện:
\(x^2-y^2< 4\Leftrightarrow\left(m+1\right)^2-\left(m-3\right)^2< 4\Leftrightarrow8m-8< 4\Leftrightarrow m< \frac{3}{2}\)
Đối chiếu điều kiện có nghiệm duy nhất---> Kết luận \(m< \frac{3}{2},m\ne-1\)
b) đk: \(\hept{\begin{cases}x\ne0\\x\ne1\end{cases}}\)
pt (1) \(\Leftrightarrow\left(x^2-2x\right)\left(x^2-2x+4\right)=0\Leftrightarrow x\left(x-2\right)\left(x^2-2x+4\right)=0\Leftrightarrow x=0\left(L\right),x=2\left(T\right)\)\(,x^2-2x+4=0\left(3\right)\)
pt(3) VÔ NGHIỆM vì \(\Delta'=1-4=-3< 0\)
Thay x=2 vào pt (2) ta được: \(\frac{1}{2}+\frac{1}{y-1}=\frac{3}{2}\Leftrightarrow\frac{1}{y-1}=1\Leftrightarrow y-1=1\Leftrightarrow x=2\left(tm\right)\)
Vậy nghiệm của hệ pt là(x;y)=(2;2)
\(b,\hept{\begin{cases}4\left(x+y\right)=5\left(x-y\right)\\\frac{40}{x+y}+\frac{40}{x-y}=9\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}4\left(x+y\right)^2\left(x-y\right)-5\left(x-y\right)^2\left(x+y\right)=0\\40\left(x-y\right)+40\left(x+y\right)-9\left(x-y\right)\left(x+y\right)=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left(x^2-y^2\right)\left[4\left(x+y\right)-5\left(x-y\right)\right]=0\\80x-9\left(x^2-y^2\right)=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left(x+y\right)\left(x-y\right)\left(9y-x\right)=0\\9\left(\frac{80}{9}x-x^2+y^2\right)=0\end{cases}}\)
\(\Rightarrow.......\)
+) Xét y = 0 hệ phương trình đã cho trở thành x 2 + 1 = 0 x 2 + 1 x − 2 = 0 (vô lý)
+) Xét y ≠ 0 chia các vế của từng phương trình cho y ta được:
x 2 + 1 y + y + x = 4 x 2 + 1 y y + x − 2 = 1
Đặt x 2 + 1 y = a y + x − 2 = b
⇒ a + b = 2 a b = 1 ⇔ a = 2 − b a ( 2 − a ) = 1 ⇔ b = 2 − a a 2 − 2 a + 1 = 0 ⇔ b = 2 − a a − 1 2 = 0 ⇔ a = b = 1 ⇔ x 2 + 1 y = 1 y + x − 2 = 1 ⇔ y = x 2 + 1 x + y = 3 ⇔ y = x 2 + 1 x + x 2 + 1 = 3 ⇔ y = x 2 + 1 x 2 + x − 2 = 0 ⇔ y = x 2 + 1 x − 1 x + 2 = 0 ⇔ y = x 2 + 1 x = 1 x = − 2 ⇔ x = 1 y = 2 ( t m ) x = − 2 y = 5 ( t m )
Đáp án:D