K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2021

Đk: \(x\ge4\)

\(A=\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\)

\(=\sqrt{\left(x-4\right)+4\sqrt{x-4}+4}+\sqrt{\left(x-4\right)-4\sqrt{x-4}+4}\)

\(=\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}\)

\(=\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|\)

TH1:\(\sqrt{x-4}>2\Leftrightarrow x>8\)

\(A=\sqrt{x-4}+2+\sqrt{x-4}-2=2\sqrt{x-4}\)

TH2:\(\sqrt{x-4}\le2\Leftrightarrow4\le x\le8\)

\(A=\sqrt{x-4}+2-\left(\sqrt{x-4}-2\right)=4\)

Vậy...

4 tháng 7 2021

\(1.\\ A=\sqrt{\left(2+\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\\ =\left|2+\sqrt{3}\right|+\left|2-\sqrt{3}\right|\\ =2+\sqrt{3}+2-\sqrt{3}=4\)

\(2.\\a.\\ P=3x-\sqrt{\left(x-5\right)^2}=3x-\left|x-5\right|\\ b.\\ x=2\Rightarrow P=3\)

\(3.\\ M=\dfrac{\sqrt{\left(x-1\right)^2}}{x-1}=\dfrac{\left|x-1\right|}{x-1}\)

\(\cdot x>1\Rightarrow M=1\\ \cdot x=1\Rightarrow M=0\\\cdot x< 1\Rightarrow M=-1\)

4 tháng 7 2021

B1.

Ta có:A\(=\sqrt{3+4\sqrt{3}+4}+\sqrt{3-4\sqrt{3}+4}\)

            \(=\sqrt{\left(\sqrt{3}+2\right)^2}+\sqrt{\left(\sqrt{3}-2\right)^2}\)

           \(=\sqrt{3}+2+\sqrt{3}-2=2\sqrt{3}\)

30 tháng 9 2021

\(\dfrac{x-2\sqrt{x}}{x-4}=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)

9 tháng 7 2023

Có : \(x-2y-\sqrt{xy}+\sqrt{x}-2\sqrt{y}=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+\sqrt{x}-2\sqrt{y}=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}+1\right)=0\)

\(\Leftrightarrow\sqrt{x}=2\sqrt{y}\) (Do \(\sqrt{x}+\sqrt{y}+1>0,\forall x;y>0\))

\(\Leftrightarrow x=4y\)

Khi đó \(P=\dfrac{7y}{\left(2\sqrt{y}+3\sqrt{y}\right).\left(\sqrt{x}+2\sqrt{y}\right)}\)

\(=\dfrac{7y}{5\sqrt{y}.4\sqrt{y}}=\dfrac{7}{20}\)

Sửa đề: \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right):\dfrac{2\sqrt{x}}{x-4}\)

ĐKXĐ: x>0; x<>4

\(A=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)+\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\sqrt{x}}\)

\(=\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{2\sqrt{x}}=\dfrac{2x}{2\sqrt{x}}=\sqrt{x}\)

HQ
Hà Quang Minh
Giáo viên
5 tháng 8 2023

Điều kiện: x>2, \(x\ne4\)

\(A=\left(\dfrac{\sqrt{x}}{\sqrt{x-2}}+\dfrac{\sqrt{x}}{\sqrt{x+2}}\right):\dfrac{2\sqrt{x}}{x-4}\\ \Rightarrow A=\sqrt{x}\cdot\dfrac{\sqrt{x+2}+\sqrt{x-2}}{\sqrt{x^2-4}}\cdot\dfrac{x-4}{2\sqrt{x}}\\ \Rightarrow A=\dfrac{\left(x-4\right)\left(\sqrt{x+2}+\sqrt{x-2}\right)}{2\sqrt{x^2-4}}\)

a: \(P=\dfrac{2x+4\sqrt{x}-x-6\sqrt{x}}{x-4}=\dfrac{x-2\sqrt{x}}{x-4}=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)

b: Thay x=1 vào P, ta được:

\(P=\dfrac{1}{1+2}=\dfrac{1}{3}\)

19 tháng 7 2017

câu 2

\(...=\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{\left(2+\sqrt{5}\right)^2}=\left|2-\sqrt{5}\right|-\left|2+\sqrt{5}\right|=-4\)

câu 1

\(P=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\right):\left(\frac{3\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\frac{1}{\sqrt{x}}\right)\)

\(=\left(\frac{\sqrt{x}\left(3-\sqrt{x}\right)+x+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}\right):\left(\frac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\)

\(=\frac{3\sqrt{x}+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}:\frac{2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\frac{3}{\left(3-\sqrt{x}\right)}.\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\sqrt{x}+4}=\frac{-3\sqrt{x}}{2\sqrt{x}+4}\)

\(P< -1\Leftrightarrow\frac{-3\sqrt{x}}{2\sqrt{x}+4}+1< 0\Leftrightarrow-\sqrt{x}+4< 0\Leftrightarrow\sqrt{x}>4\Leftrightarrow x>16\)

13 tháng 12 2023

Q = (1 - \(\dfrac{\sqrt{a}-4a}{1-4a}\)) : \(\left[1-\dfrac{1+2a-2\sqrt{a}\left(2\sqrt{a}+1\right)}{1-4a}\right]\)

     = \(\left(\dfrac{1-4a-\sqrt{a}+4a}{1-4a}\right):\left[\dfrac{1-4a-1-2a+4a+2\sqrt{a}}{1-4a}\right]\)

    = \(\dfrac{1-\sqrt{a}}{1-4a}:\left(\dfrac{-2a+2\sqrt{a}}{1-4a}\right)\)

    = \(\dfrac{1-\sqrt{a}}{1-4a}.\dfrac{1-4a}{2\sqrt{a}\left(1-\sqrt{a}\right)}\)

    = \(\dfrac{1}{2\sqrt{a}}\) = \(\dfrac{\sqrt{a}}{2a}\)

 


 

25 tháng 7 2019

Bạn xem nhé! Đây là phần mình sưu tầm được khá chi tiết rồi

25 tháng 7 2019

a) Ta có:

\(VT=x - 4\sqrt {x - 4} \)

\(= \left( {x - 4} \right) - 2.2\sqrt {x - 4} + 4\)

\( = {\left( {\sqrt {x - 4} } \right)^2} - 2.2\sqrt {x - 4} + {2^2} \)

\(= {\left( {\sqrt {x - 4} - 2} \right)^2}=VP\)

Vế trái bằng vế phải nên đẳng thức được chứng minh.

b) A xác định khi: \(x - 4 \ge 0\) và \(x - 4\sqrt {x - 4} \ge 0\)

\(x - 4 \ge 0 \Leftrightarrow x \ge 4\)

\(\eqalign{
& x - 4\sqrt {x - 4} = \left( {x - 4} \right) - 2.2\sqrt {x - 4} + 4 \cr
& = {\left( {\sqrt {x - 4} - 2} \right)^2} \ge 0\text{( luôn đúng )} \cr} \)

Ta có:

\(A = \sqrt {x + 4\sqrt {x - 4} } + \sqrt {x - 4\sqrt {x - 4} } \)

\( = \sqrt {{{\left( {\sqrt {x - 4} + 2} \right)}^2}} + \sqrt {{{\left( {\sqrt {x - 4} - 2} \right)}^2}} \)

\( = \left| {\sqrt {x - 4} + 2} \right| + \left| {\sqrt {x - 4} - 2} \right|\)

\( = \sqrt {x - 4} + 2 + \left| {\sqrt {x - 4} - 2} \right|\)

- Nếu

\(\eqalign{
& \sqrt {x - 4} - 2 \ge 0 \Leftrightarrow \sqrt {x - 4} \ge 2 \cr
& \Leftrightarrow x - 4 \ge 4 \Leftrightarrow x \ge 8 \cr} \)

thì: \(\left| {\sqrt {x - 4} - 2} \right| = \sqrt {x - 4} - 2\)

Ta có: \(A = \sqrt {x - 4} + 2 + \sqrt {x - 4} - 2 = 2\sqrt {x - 4} \)

- Nếu:

\(\eqalign{
& \sqrt {x - 4} - 2 < 0 \Leftrightarrow \sqrt {x - 4} < 2 \cr
& \Leftrightarrow x - 4 < 4 \Leftrightarrow x < 8 \cr} \)

thì \(\left| {\sqrt {x - 4} - 2} \right| = 2 - \sqrt {x - 4} \)

Ta có: \(A = \sqrt {x - 4} + 2 + 2 - \sqrt {x - 4} = 4\)


CÁC TÁC PHẨM KHÁC
  • Ôn tập chương II - Đường tròn
  • Bài 8. Vị trí tương đối của hai đường tròn (tiếp theo)
  • Bài 7. Vị trí tương đối của hai đường tròn
  • Bài 6. Tính chất của hai tiếp tuyến cắt nhau
  • Bài 5. Dấu hiệu nhận biết tiếp tuyến của đường tròn
  • Bài 4. Vị trí tương đối của đường thẳng và đường tròn
  • Bài 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây
  • Bài 2. Đường kính và dây của đường tròn
  • Bài 1: Sự xác định đường tròn. Tính chất đối xứng của đường tròn
  • Bài tập ôn chương IV - Hàm số bậc hai. Phương trình bậc hai một ẩn.
BÀI VIẾT MỚI NHẤT
  • Bài 8.23* trang 87 Sách bài tập Vật lí 10 Nâng cao
  • Bài 8.22 trang 86 Sách bài tập Vật lí 10 Nâng cao
  • Bài 8.21 trang 86 Sách bài tập Vật lí 10 Nâng cao
  • Bài 8.20 trang 86 Sách bài tập Vật lí 10 Nâng cao
  • Bài 8.17 trang 86 Sách bài tập Vật lí 10 Nâng cao
  • Bài 8.15* trang 85 Sách bài tập Vật lí 10 Nâng cao
  • Bài 8.14 trang 85 Sách bài tập Vật lí 10 Nâng cao
  • Bài 8.24* trang 87 Sách bài tập Vật lí 10 Nâng cao
  • Bài 8.12 trang 85 Sách bài tập Vật lí 10 Nâng cao
  • Bài 8.11* trang 85 Sách bài tập Vật lí 10 Nâng cao