tìm các số tự nhiên khác x,y khác 0 và thỏa mãn đề bài: 1/x+2/y=3/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 .
\(\left|x^2+|x+1|\right|=x^2+5\)
\(Đkxđ:x^2+5\ge0\)
\(\Leftrightarrow x^2\ge-5,\forall x\) ( với mọi x , vì bất cứ số nào bình phương cũng lớn hơn hoặc bằng - 5 )
\(\Leftrightarrow\hept{\begin{cases}x^2+\left|x+1\right|=x^2+5\\x^2+\left|x+1\right|=-x^2-5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left|x+1\right|=5\\\left|x+1\right|=-2x^2-5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+1=5;x+1=-5\\x+1=-2x^2-5;x+1=2x^2+5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=4;x=-6\\2x^2+x+1=0;-2x^2+x-4=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=4;x=-6\\2x^2+x+1=0\left(VN\right);-2x^2+x-4=0\left(VN\right)\end{cases}}\) ( VN là vô nghiệm nha )
Vậy : x = 4 hoặc x = -6
(2x+1)(y-3)=48
mà 2x+1 lẻ; y-3>=-3 vì x,y là các số tự nhiên
nên \(\left(2x+1\right)\left(y-3\right)=1\cdot48=3\cdot16\)
=>\(\left(2x+1;y-3\right)\in\left\{\left(1;48\right);\left(3;16\right)\right\}\)
=>\(\left(2x;y\right)\in\left\{\left(0;51\right);\left(2;19\right)\right\}\)
=>\(\left(x;y\right)\in\left\{\left(0;51\right);\left(1;19\right)\right\}\)
mà x,y là các số tự nhiên khác 0
nên \(\left(x;y\right)=\left(1;19\right)\)
=>\(x\cdot y=1\cdot19=19\) là số nguyên tố
x = 4
y = 4
Khi đó, ta có: \(\frac{1}{4}\)+ \(\frac{2}{4}\) = \(\frac{3}{4}\) (đã thỏa mãn đề bài)
Chúc e học tốt
Theo đề bài, ta có \(\frac{1}{x}\)+ \(\frac{2}{y}\)= \(\frac{3}{4}\)
Ta có công thức cộng phân số: lấy tử số của phân số thứ nhất + tử số của phân số thứ hai và giữ nguyên mẫu số
Ta thấy: Tử số của phân số thứ nhất là 1 + tử số của phân số thứ hai là 2 = tử số của tổng là 3
Trong trường hợp ta để x và y = 4 thì ta sẽ có biểu thức:
\(\frac{1}{4}\)+ \(\frac{2}{4}\)= \(\frac{3}{4}\)
Vậy: x = 4
y = 4
~~~ Hok tốt ~~~