a)chứng minh rằng tích của 4 số nguyên liên tiếp luôn chia hết cho 4
b)tìm các số nguyên x,y thoã mãn
(2x-1).(y+4)=11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trước khi giải bài mình xin cảm ơn bạn Siêu sao bóng đá đã góp ý chân thành.
a) \(\left(2x-1\right)\left(y-4\right)=11\)
Nếu \(\left(2x-1\right)\left(y-4\right)=11\)ta xét 4 trường hợp sau đây :
TH1: \(\orbr{\begin{cases}2x-1=11\\y+1=11\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\y=10\end{cases}}}\)(Loại. Vì chúng không thỏa mãn đề bài)
TH2: \(\orbr{\begin{cases}2x-1=11\\y+2=11\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\y=9\end{cases}}\)( loại. Vì chúng không thỏa mãn đề bài)
TH3: \(\orbr{\begin{cases}2x-1=11\\y+3=11\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\y=8\end{cases}}\)( loại. Vì chúng không thỏa mãn đề bài))
\(TH4:\orbr{\begin{cases}2x-1=11\\y+4=11\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\y=7\end{cases}}}\)( Chọn)
Vậy \(\orbr{\begin{cases}x=1\\y=7\end{cases}}\)
b) Gọi tích 4 số tự nhiên liên tiếp đó lần lượt là:
( 24k + 1 ) . (24k + 2) . (24k + 3) . (24k +4)
= 24k . ( 1 + 2 + 3 + 4)
= 24k 10
Mà 24k 10 chia hết cho 24 => Tích 4 số tự nhiên liên tiếp chia hết cho 24
vì (2x-1)(y+4)=11 nên 2x-1 và y+1 \(\in\)ước của 11
bn giải tiếp ha
b. trong 4 số tự nhiên liên tiếp luôn tồn tại ít nhất 1 số là bội của 2; 1 số là bội của 3; 1 số là bội của 4 nên tích 4 số tự nhiên liên tiếp chia hết cho 24
bài 2 :
x3+7y=y3+7x
x3-y3-7x+7x=0
(x-y)(x2+xy+y2)-7(x-y)=0
(x-y)(x2+xy+y2-7)=0
\(\left\{{}\begin{matrix}x-y=0\Rightarrow x=y\left(loại\right)\\x^{2^{ }}+xy+y^2-7=0\end{matrix}\right.\)
x2+xy+y2=7 (*)
Giải pt (*) ta đc hai nghiệm phan biệt:\(\left[{}\begin{matrix}x=1va,y=2\\x=2va,y=1\end{matrix}\right.\)
Ta có: \(\left(2x+3y\right)^2< \left(2x+3y\right)^2+5x+5y+1< \left(2x+3y+2\right)^2\).
Do đó để \(\left(2x+3y\right)^2+5x+5y+1\) là số chính phương thì \(\left(2x+3y\right)^2+5x+5y+1=\left(2x+3y+1\right)^2\Leftrightarrow x=y\).
Vậy x = y
tớ mới học lớp 5 mà khó thế