Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thật sự ra mục đích bài này đi chứng minh biểu thức trong ngoặc là scp
Đây là dề thi HSG toán cấp tỉnh Đồng Tháp
Có: \(\sqrt{\left(1+x^2\right)\left(1+y^2\right)\left(1+z^2\right)}\)
\(=\sqrt{\left(x^2+xy+yz+xz\right)\left(y^2+xy+yz+xz\right)\left(z^2+xy+yz+xz\right)}\)
Sau đó thực hiên phân tích đa thức thành nhân tử mỗi ngoặc
\(=\sqrt{\left(x+y\right)^2\left(y+z\right)^2\left(x+z\right)^2}\)
\(=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)là số hữu tỉ
Vậy
Câu số 1b đề thi hsg
Chào anh từ huyện Cao Lãnh
Dự đoán khi \(x=y=z=\sqrt{3}\) vậy dc GTNN là \(\frac{3\sqrt{3}}{2}\), cần c/m: \(P\ge\frac{3\sqrt{3}}{2}\)
\(\LeftrightarrowΣ\frac{y^2z^2}{x\left(y^2+z^2\right)}\ge\frac{3}{2}\sqrt{\frac{3}{\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}}}\)
\(\LeftrightarrowΣ\frac{y^3z^3}{y^2+z^2}\ge\frac{3}{2}\sqrt{\frac{3x^4y^4z^4}{x^2y^2+x^2z^2+y^2z^2}}\).Đặt \(\hept{\begin{cases}yz=a\\xz=b\\xy=c\end{cases}}\)
Khi đó ta cần chứng minh \(Σ\frac{a^3}{\frac{ac}{b}+\frac{ab}{c}}\ge\frac{3}{2}\sqrt{\frac{3a^2b^2c^2}{a^2+b^2+c^2}}\)
\(\LeftrightarrowΣ\frac{a^2}{b^2+c^2}\ge\frac{3}{2}\sqrt{\frac{3}{a^2+b^2+c^2}}\) và từ BĐT thuần nhất cuối , ta có thế khẳng định rằng \(a^2+b^2+c^2=3\)
Có nghĩa là ta cần c/m \(Σ\frac{a}{3-a^2}\ge\frac{3}{2}\LeftrightarrowΣ\left(\frac{a}{3-a^2}-\frac{1}{2}\right)\ge0\)
\(\LeftrightarrowΣ\frac{\left(a-1\right)\left(a+3\right)}{3-a^2}\ge0\)\(\LeftrightarrowΣ\left(\frac{\left(a-1\right)\left(a+3\right)}{3-a^2}-\left(a^2-1\right)\right)\ge0\)
\(\LeftrightarrowΣ\frac{a\left(a+2\right)\left(a-1\right)^2}{3-a^2}\ge0\) . XOng!
a) Đặt \(\hept{\begin{cases}x+y-z=a\\y+z-x=b\\z+x-y=c\end{cases}\Rightarrow}x=\frac{a+c}{2};y=\frac{b+a}{2};z=\frac{c+b}{2}\)
Suy ra bất đẳng thức cần chứng minh tương đương với: \(\frac{a+b}{2}.\frac{b+c}{2}.\frac{c+a}{2}\ge abc\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{8}\ge abc\)\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Áp dụng bất đẳng thức AM-GM: \(\hept{\begin{cases}a+b\ge2\sqrt{ab}\ge0\\b+c\ge2\sqrt{bc}\ge0\\c+a\ge2\sqrt{ca}\ge0\end{cases}\Rightarrow}\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\sqrt{\left(abc\right)^2}=8abc\)
Vật bất đẳng thức được chứng minh
Dấu "=" xảy ra khi \(a=b=c\Leftrightarrow x=y=z\)
a) Ta có : \(1+x^2=xy+yz+zx+x^2=x\left(x+y\right)+z\left(x+y\right)=\left(x+y\right)\left(z+x\right)\)
b) \(\Sigma\left(x\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}\right)=\Sigma\left(x\sqrt{\dfrac{\left(x+y\right)\left(y+z\right).\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}\right)\)
\(=\Sigma\left(x\left(y+z\right)\right)=xy+xz+xy+yz+zx+zy=2\left(xy+yz+zx\right)=2\)