K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2018

Trước khi giải bài mình xin cảm ơn bạn Siêu sao bóng đá đã góp ý chân thành.   

a)  \(\left(2x-1\right)\left(y-4\right)=11\)

Nếu  \(\left(2x-1\right)\left(y-4\right)=11\)ta xét 4 trường hợp sau đây  :  

   TH1:   \(\orbr{\begin{cases}2x-1=11\\y+1=11\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\y=10\end{cases}}}\)(Loại. Vì chúng không thỏa mãn đề bài)

   TH2:   \(\orbr{\begin{cases}2x-1=11\\y+2=11\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\y=9\end{cases}}\)( loại. Vì chúng không thỏa mãn đề bài)

  TH3:   \(\orbr{\begin{cases}2x-1=11\\y+3=11\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\y=8\end{cases}}\)( loại. Vì chúng không thỏa mãn đề bài))

  \(TH4:\orbr{\begin{cases}2x-1=11\\y+4=11\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\y=7\end{cases}}}\)( Chọn)

Vậy \(\orbr{\begin{cases}x=1\\y=7\end{cases}}\)

b) Gọi tích 4 số tự nhiên liên tiếp đó lần lượt là:

( 24k + 1 ) . (24k + 2) . (24k + 3) . (24k +4)

= 24k . ( 1 + 2 + 3 + 4)

= 24k 10

    Mà 24k 10 chia hết cho 24 => Tích 4 số tự nhiên liên tiếp chia hết cho 24

18 tháng 2 2018

vì (2x-1)(y+4)=11 nên 2x-1 và y+1 \(\in\)ước của 11 

bn giải tiếp ha 

b. trong 4 số tự nhiên liên tiếp luôn tồn tại ít nhất 1 số là bội của 2; 1 số là bội của 3; 1 số là bội của 4 nên tích 4 số tự nhiên liên tiếp chia hết cho 24

AH
Akai Haruma
Giáo viên
6 tháng 1 2023

4 không chia hết cho 49. Bạn xem lại đề xem lỗi ở đâu.

9 tháng 11 2016

_C1_
Tìm số tự nhiên a,biết rằng 398 chia a dư 38,còn 450 chia a dư 18
_C2_
Chứng minh rằng,các số sau đây nguyên tố cùng nhau:
a,hai số lẻ liên tiếp
b,2n+5 và 3n+7
_C3_
a,Cho a là số nguyên tố lớn hơn 3.Chứng minh rằng:(a-1)x(a+4) chia hết cho 6
b,Chứng minh rằng,tích của 4 số tự nhiên liên tiếp chia hết cho 24
_C4_
ƯCLN(ước chung lớn nhất) của 2 số tự nhiên bằng 4.Số tự nhiên nhỏ là 8.Tìm số lớn
_C5_
Tìm n,sao cho:
a, n+4 chia hết cho n+1
b, n2+4 chia hết cho n+2
_Làm được bài nào thì làm,vậy thôi_

ban lam duoc het sao ban tra loi thu xem bai nay nhieu qua ban tra loi xong minh tra loi nho tra loi dung do

6 tháng 8 2023

a) 3 số nguyên liên tiếp là \(n;\left(n+1\right);\left(n+2\right)\)

Ta có \(\Rightarrow n\left(n+1\right)\left(n+2\right)\) trong 3 số sẽ có 1 số chia hết cho 3

\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮3\Rightarrow dpcm\)

b) 5 số nguyên liên tiếp là \(n;\left(n+1\right);\left(n+2\right);\left(n+3\right);\left(n+4\right)\)

mà trong 5 số này có số chia hết cho 2;4;3;5 và 2.4=8

⇒ Tích 5 số này chia hết cho 3,5,8 \(\left[UCLN\left(3;5;8\right)=1\right]\)

⇒ Tích 5 số này chia hết cho tích của 3,5,8

mà \(3.5.8=120\)

\(\Rightarrow dpcm\)

 

6 tháng 8 2023

c) 3 số chẵn liên tiếp là \(2n;2n+2;2n+4\)

Ta có \(2n\left(2n+2\right)\left(2n+4\right)\)

\(=2.2.2n\left(n+1\right)\left(n+2\right)\)

\(=8n\left(n+1\right)\left(n+2\right)⋮8\left(1\right)\)

Ta lại có  \(\left\{{}\begin{matrix}n\left(n+1\right)\left(n+2\right)⋮3\\n\left(n+1\right)⋮2\end{matrix}\right.\)

\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow8n\left(n+1\right)\left(n+2\right)⋮48\)

\(\Rightarrow dpcm\)