Một ô tô đi từ A đến B cách nhau 120km với vận tốc ko đổi. Sau khi đi được 2 giờ, xe dừng lại 12 phút để nghĩ. Muốn đến B đúng thời gian đã định, người lái xe pphải tăng vận tốc thêm 10km/h trên quảng đường còn lại. Tính vận tốc ban đầu của ô tô Giúp mình với cần gấp lắm 😊
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi vận tốc ô tô lúc đầu là x ( km/h ) . Điều kiện 0 < x < 120
Vận tốc ô tô lúc sau là : x + 6 ( km/h )
Thời gian dự định là : \(\frac{120}{x}\left(h\right)\)
Quãng đường ô tô đi trong 1 giờ là : 1.x = x ( km)
Quãng đường còn lại là : 120 - x ( km)
Thời gian ô tô đi trên quãng đường còn lại là : \(\frac{120-x}{x+6}\)
Vì thời gian dự định bằng thời gian thực tế nen ta có phương trình :
\(\frac{120}{x}=1+\frac{1}{6}+\frac{120-x}{x+6}\)
\(\Rightarrow x=48\)(km/h)
Vậy vận tốc ban đầu của ô tô là : 48 km/h
Đ/S: 48 km/h
Gọi vận tốc ô tô lúc đầu là x
Vận tốc ô tô lúc sau là x + 6 ( km/h )
Thời gian dự định là: \(\frac{120}{x}\)( h )
Quãng đg ô tô đi trg 1 h là x ( km )
Quãng đg còn lại là 120 - x (km)
Tg ô tô đi trg trên qđ còn lại là \(\frac{120-x}{x+6}\)
Vì tg dự định bằng tg thực tế nên ta có
120/x=1+1/6+120-x/x+6
=> x = 48 ( km/h )
Kết luận
Gọi vận tốc dự định là x
Theo đề,ta có: \(\dfrac{120}{x}=\dfrac{40}{x}+\dfrac{2}{5}+\dfrac{80}{x+10}\)
=>\(\dfrac{80}{x}-\dfrac{80}{x+10}=\dfrac{2}{5}\)
=>\(\dfrac{40}{x}-\dfrac{40}{x+10}=\dfrac{1}{5}\)
=>\(\dfrac{40x+400-40x}{x\left(x+10\right)}=\dfrac{1}{5}\)
=>x^2+10x-2000=0
=>x=40
Đổi \(30p=\frac{1}{2}h\)
Gọi vận tốc dự định của người đó là x (km/h) (x > 0)
\(\Rightarrow\) thời gian dự định của người đó là : \(t_{dđ}=\frac{S_{AB}}{v_{dđ}}=\frac{50}{x}\) (h)
Quãng đường ng đó di chuyển được sau 2 giờ là : \(2x\) (km)
\(\Rightarrow\)Quãng đường còn lại là \(50-2x\) (km)
Người đó phải tăng vận tốc thêm 2km/h trên quãng đường còn lại để đến B đúng dự định nên ta có PT :
\(\frac{50}{x}=2+\frac{1}{2}+\frac{50-2x}{x+2}\)
\(\Leftrightarrow\frac{50}{x}=\frac{5}{2}+\frac{50-2x}{x+2}\)
\(\Leftrightarrow\frac{50}{x}=\frac{5x+10+100-4x}{2\left(x+2\right)}\Leftrightarrow\frac{50}{x}=\frac{x+110}{2x+4}\)
\(\Leftrightarrow x^2+110x-100x-200=0\)
\(\Leftrightarrow x^2+10x-200=0\)
\(\Leftrightarrow\left(x-10\right)\left(x+20\right)\Rightarrow\orbr{\begin{cases}x=10\\x=-20\left(l\right)\end{cases}}\)
Vậy vận tốc ban đầu của xe là 10 km/h
Quãng đường AB dài là:
60 x 2 = 120 (km)
Nếu người đó đi với vận tốc 40km/h thì cần thời gian là:
120: 40 = 3 giờ
Gọi vận tốc dự định của xe là x (km/h; x > 0)
Thời gian ô tô dự định đi là \(\dfrac{120}{x}\) (giờ)
Sau 2h đi, ô tô đi được: 2x (km)
Vận tốc lúc sau của ô tô là x + 10 (km/h)
Thời gian của ô tô đi trên quãng đường còn lại là \(\dfrac{120-2x}{x+10}\) (giờ)
Do người đó đến B đúng thời gian dự tính => ta có phương trình:
\(2+\dfrac{1}{2}+\dfrac{120-2x}{x+10}=\dfrac{120}{x}\)
<=> (x-30)(x+80) = 0
Mà x > 0
<=> x = 30 (tm)
Vận tốc của xe là 30km/h
Thời gian xe đi là \(\dfrac{120}{30}=4\left(giờ\right)\)
Gọi vận tốc ô tô lúc đầu là x(0<x<120, km/h)
vận tốc của ô tô lúc sau là: x+10(km/h)
tgian dự định: 120/x(h)
quãng đường ô tô đi trg 2h: 2x(km)
quãng đường còn lại: 120-2x
tgian đi trên quãng đường còn lại: \(\dfrac{120-2x}{x+10}\)(h)
Theo đề bài ta có pt:
\(\dfrac{120}{x}\)=2+\(\dfrac{1}{5}\)+\(\dfrac{120-2x}{x+10}\)
Bạn tự giải phương trình nhé!!!