Cho \(x\ge y\ge z>0.CMR:\frac{x^2y}{2}+\frac{y^2z}{2}+\frac{z^2x}{2}\ge\left(x^2+y^2+z^2\right)^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT AM-GM ta có:
$\frac{x^3}{(y+2z)^2}+\frac{y+2z}{27}+\frac{y+2z}{27}\geq 3\sqrt[3]{\frac{x^3}{(y+2z)^2}.\frac{y+2z}{27}.\frac{y+2z}{27}}=\frac{x}{3}$
$\frac{y^3}{(z+2x)^2}+\frac{z+2x}{27}+\frac{z+2x}{27}\geq \frac{y}{3}$
$\frac{z^3}{(x+2y)^2}+\frac{x+2y}{27}+\frac{x+2y}{27}\geq \frac{z}{3}$
Cộng theo vế các BĐT trên và thu gọn thì:
$\sum \frac{x^3}{(y+2z)^2}+\frac{x+y+z}{9}\geq \frac{x+y+z}{3}$
$\Rightarrow \sum \frac{x^3}{(y+2z)^2}\geq \frac{2}{9}(x+y+z)$ (đpcm)
Dấu "=" xảy ra khi $x=y=z$
Lời giải:
BĐT \(\Leftrightarrow (9+x^2y^2+y^2z^2+z^2x^2)(xy+yz+xz)\geq 36xyz(*)\)
Thật vậy, áp dụng BĐT AM-GM:
\(9+x^2y^2+y^2z^2+z^2x^2=1+1+...+1+x^2y^2+y^2z^2+z^2x^2\geq 12\sqrt[12]{x^4y^4z^4}\)
\(xy+yz+xz\geq 3\sqrt[3]{x^2y^2z^2}\)
Nhân theo vế ta có BĐT $(*)$ luôn đúng
Do đó ta có đpcm.
Dấu "=" xảy ra khi $x=y=z=1$
Đặt \(x^2+2y^2=m;y^2+2z^2=n;z^2+2x^2=p\)
Ta có :\(9\left(x^2+y^2+z^2\right)\left(\frac{a^3}{x^2+2y^2}+\frac{b^3}{y^2+2z^2}+\frac{c^3}{z^2+2x^2}\right)\)
\(=\left(1+1+1\right)\left(m+n+p\right)\left(\frac{a^3}{m}+\frac{b^3}{n}+\frac{c^3}{p}\right)\ge\left(a+b+c\right)^3=1\)
do đó \(9\left(x^2+y^2+z^2\right)\left(\frac{a^3}{x^2+2y^2}+\frac{b^3}{y^2+2z^2}+\frac{c^3}{z^2+2x^2}\right)\ge1\)
\(\Rightarrow\left(x^2+y^2+z^2\right)\left(\frac{a^3}{x^2+2y^2}+\frac{b^3}{y^2+2z^2}+\frac{c^3}{z^2+2x^2}\right)\ge\frac{1}{9}\)(đpcm)
Xong rồi đấy,bạn k cho mình nhé
Bài này dùng Cauchy ngược dấu:
\(\Sigma\frac{2x^2}{x+y^2}=\Sigma\frac{2x\left(x+y^2\right)-2xy^2}{x+y^2}=2\left(x+y+z\right)-2.\Sigma\frac{xy^2}{x+y^2}\)
Từ đây ta có thể quy bđt vế chứng minh: \(\Sigma\frac{xy^2}{x+y^2}\le\frac{x+y+z}{2}\)
Ta có: \(VT\le\Sigma\frac{xy^2}{2\sqrt{xy^2}}=\Sigma\frac{\sqrt{xy.y}}{2}\le\frac{xy+yz+zx+x+y+z}{4}\)
Như vậy cần chứng minh: \(xy+yz+zx\le x+y+z\)
Ta có: \(VT=\sqrt{\left(xy+yz+zx\right)^2}\le\sqrt{\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)}=\sqrt{3\left(xy+yz+zx\right)}\le x+y+z\)
Từ đây có đpcm:)
ngu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườingu ngườichó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó nguchó ngu
\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)
\(=\frac{x^4}{xy+2zx}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\frac{x^2+y^2+z^2}{3}=\frac{1}{3}\)
ko biết
?????