K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2019

Bài này dùng Cauchy ngược dấu:

\(\Sigma\frac{2x^2}{x+y^2}=\Sigma\frac{2x\left(x+y^2\right)-2xy^2}{x+y^2}=2\left(x+y+z\right)-2.\Sigma\frac{xy^2}{x+y^2}\)

Từ đây ta có thể quy bđt vế chứng minh: \(\Sigma\frac{xy^2}{x+y^2}\le\frac{x+y+z}{2}\)

Ta có: \(VT\le\Sigma\frac{xy^2}{2\sqrt{xy^2}}=\Sigma\frac{\sqrt{xy.y}}{2}\le\frac{xy+yz+zx+x+y+z}{4}\)

Như vậy cần chứng minh: \(xy+yz+zx\le x+y+z\)

Ta có: \(VT=\sqrt{\left(xy+yz+zx\right)^2}\le\sqrt{\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)}=\sqrt{3\left(xy+yz+zx\right)}\le x+y+z\)

Từ đây có đpcm:)

5 tháng 1 2018

ko biết

5 tháng 1 2018

?????

NV
14 tháng 5 2020

\(\sqrt{x^2+y^2+y^2}\ge\sqrt{3\sqrt[3]{x^2y^4}}=\sqrt{3}.\sqrt[3]{xy^2}\)

\(\Rightarrow VT\ge\sqrt{3}\left(\frac{\sqrt[3]{xy^2}}{z}+\frac{\sqrt[3]{yz^2}}{x}+\frac{\sqrt[3]{zx^2}}{y}\right)\)

\(\Rightarrow VT\ge3\sqrt{3}\sqrt[3]{\frac{\sqrt[3]{xy^2.yz^2.zx^2}}{xyz}}=3\sqrt{3}.\sqrt[3]{\frac{\sqrt[3]{x^3y^3z^3}}{xyz}}=3\sqrt{3}\)

Dấu "=" xảy ra khi \(x=y=z\)

14 tháng 5 2020

@Nguyễn Việt Lâm

22 tháng 5 2017

\(\frac{x^2}{2y}+\frac{y^2}{2x}+\frac{y^2}{2z}+\frac{z^2}{2y}+\frac{z^2}{2x}+\frac{x^2}{2z}\ge\frac{\left(2x+2y+2z\right)^2}{4\left(x+y+z\right)}=x+y+z\)

26 tháng 8 2017

KON 'NICHIWA ON" NANOKO: chào cô

14 tháng 8 2016

Áp dụng BĐT Cô si ta có:

\(x+y\ge2\sqrt{xy}=2\cdot\frac{1}{\sqrt{z}};y+z\ge2\sqrt{yz}=2\cdot\frac{1}{\sqrt{x}};z+x\ge2\sqrt{xz}=2\cdot\frac{1}{\sqrt{y}}.\)( vì xyz=1)

=> P\(\ge\)\(\frac{2x\sqrt{x}}{y\sqrt{y}+2z\sqrt{z}}\)\(\frac{2y\sqrt{y}}{z\sqrt{z}+2x\sqrt{x}}+\frac{2z\sqrt{z}}{x\sqrt{x}+2y\sqrt{y}}\)

Đặt \(\hept{\begin{cases}a=y\sqrt{y}+2z\sqrt{z}\\b=z\sqrt{z}+2x\sqrt{x}\\c=x\sqrt{x}+2y\sqrt{y}\end{cases}\left(a;b;c\ge0\right)}\)<=> \(\hept{\begin{cases}4a+b=2c+9z\sqrt{z}\\4b+c=2a+9x\sqrt{x}\\4c+a=2b+9y\sqrt{y}\end{cases}}\)

<=> \(\hept{\begin{cases}z\sqrt{z}=\frac{4a+b-2c}{9}\\x\sqrt{x}=\frac{4b+c-2a}{9}\\y\sqrt{y}=\frac{4c+a-2b}{9}\end{cases}}\)

Do đó:

\(\ge\)\(\frac{2}{9}\cdot\left(\frac{4a+b-2c}{c}+\frac{4b+c-2a}{a}+\frac{4c+a-2b}{b}\right)\)

<=> P \(\ge\)\(\frac{2}{9}\left(4\left(\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\right)+\left(\frac{b}{c}+\frac{c}{a}+\frac{a}{b}\right)-6\right)\)

<=> P \(\ge\frac{2}{9}\cdot\left(4\cdot3\cdot\sqrt[3]{\frac{a}{c}\cdot\frac{b}{a}\cdot\frac{c}{b}}+3\cdot\sqrt[3]{\frac{b}{c}\cdot\frac{c}{a}\cdot\frac{a}{b}}-6\right)\)( Áp dụng BĐT Cô si cho 3 số ko âm)

<=> P \(\ge\frac{2}{9}\left(12+3-6\right)=2\)( đpcm)

Dấu = khi x=y=z=1.

24 tháng 4 2020

Bài 1 : 

Bât đẳng thức cần chứng minh tương đương với :

( xy+yz + zx )(9 + x2y2 +z2y2 + x2z2 ) \(\ge\)36xyz 

Áp dụng bất đẳng thức Côsi ta có : 

xy+ yz + zx \(\ge3\sqrt[3]{x^2y^2z^2}\)           ( 1) 

Và 9 + x2y2 + z2y2 + x2z2 \(\ge12\sqrt[12]{x^4y^4z^4}\)

hay 9+ x2y2 + z2y2+ x2z2 \(\ge12\sqrt[3]{xyz}\)                (2) 

Do các vế đều dương ,từ (1) và (2) suy ra :

( xy + yz +zx )( 9+ x2y2 + z2y2 + x2z2 ) \(\ge36xyz\left(đpcm\right)\)

Dấu đẳng thức xảy ra khi và chỉ khi x = y  =z = 1 

Bài 2: 

\(\hept{\begin{cases}a;b;c>0\\ab+bc+ca=1\end{cases}}\)

Có : \(\hept{\begin{cases}\sqrt{1+a^2}\ge\sqrt{2a}\Rightarrow\frac{a}{\sqrt{1+a^2}}\le\frac{\sqrt{3}}{2}a\\\sqrt{1+b^2}\ge\sqrt{2b}\Rightarrow\frac{b}{\sqrt{1+b^2}}\le\frac{\sqrt{3}}{2}b\\\sqrt{1+c^2}\ge\sqrt{2c}\Rightarrow\frac{c}{\sqrt{1+c^2}}\le\frac{\sqrt{3}}{2}c\end{cases}}\)

=> \(\sqrt{1+a^2}+\sqrt{1+b^2}+\sqrt{1+c^2}\le\frac{\sqrt{3}}{2}\left(a+b+c\right)\le\frac{\sqrt{3}}{2}.\frac{\sqrt{3}}{2}\left(ab+bc+ca\right)\)

=> \(\sqrt{1+a^2}+\sqrt{1+b^2}+\sqrt{1+c^2}\le\frac{3}{2}\left(đpcm\right)\)

Dấu "=" xảy ra khi và chỉ khi a =b =c = \(\frac{1}{\sqrt{3}}\)

22 tháng 5 2020

ko lam thi thoi chui cl ay!!!

22 tháng 5 2020

đù , chuyện giề đang xảy ra vậy man

17 tháng 10 2020

Áp dụng trực tiếp bất đẳng thức Cauchy-Schwarz dạng Engel:

\(VT\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)+2\left(x+y+z\right)+3\left(x+y+z\right)}=1\)

Dấu bằng xảy ra khi \(x=y=z=2\)

17 tháng 10 2020

Áp dụng BĐT AM - GM cho 2 số dương, ta được: \(\frac{x^2}{x+2y+3z}+\frac{1}{36}\left(x+2y+3z\right)\ge2\sqrt{\frac{x^2}{x+2y+3z}.\frac{1}{36}\left(x+2y+3z\right)}=\frac{1}{3}x\Rightarrow\frac{x^2}{x+2y+3z}\ge\frac{11}{36}x-\frac{1}{18}y-\frac{1}{12}z\)Tương tự, ta có: \(\frac{y^2}{y+2z+3x}\ge\frac{11}{36}y-\frac{1}{18}z-\frac{1}{12}x\)\(\frac{z^2}{z+2x+3y}\ge\frac{11}{36}z-\frac{1}{18}x-\frac{1}{12}y\)

Cộng theo vế của 3 bất đẳng thức trên, ta được: \(G=\frac{x^2}{x+2y+3z}+\frac{y^2}{y+2z+3x}+\frac{z^2}{z+2x+3y}\ge\frac{1}{6}\left(x+y+z\right)=1\)

Đẳng thức xảy ra khi x = y = z = 2