tìm các số tự nhiên a,b thỏa mãn : \(\frac{1}{a}\)= \(\frac{1}{6}+\frac{b}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm các bộ 3 số tự nhiên a, b, c khác 0 thỏa mãn:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{4}{5}\)
Ta thấy a, b, c, d > 1 vì nếu một số bằng 1 thì tổng lớn hơn 1
Nếu trong 4 số a, b, c, d có ít nhất 1 số lớn hơn 2 thì tổng đã cho có GTLN là :
\(\frac{1}{2\cdot2}+\frac{1}{2\cdot2}+\frac{1}{2\cdot2}+\frac{1}{3\cdot3}< \frac{1}{4}\cdot4=1\)
Do đó a, b, c, d < 3
Vậy a = b = c = d = 2, ta có :
\(\frac{1}{2\cdot2}+\frac{1}{2\cdot2}+\frac{1}{2\cdot2}+\frac{1}{2\cdot2}=1\) ( đúng )
Cbht
Giả sử không mất tính tổng quát : a < b < c
=> 1 / a > 1 / b > 1 / c
=> 1 / a + 1 / a + 1 / a > 1 / a + 1 / b + 1 / c > 1 / c + 1 / c + 1 / c
=> 3 . 1/ a > 4 / 5 > 3 . 1 / c
Đến đây cậu có thể là được rồi
Bài 1:
Ta có \(\frac{m}{2}-\frac{2}{n}=\frac{1}{2}\) =>\(\frac{m}{2}-\frac{1}{2}=\frac{2}{n}\)
=>\(\frac{m-1}{2}=\frac{2}{n}\)
=> n(m-1) = 4
=> n và m-1 thuộc Ư(4)={1;2;4}
Ta có bảng sau:
m-1 | 1 | 2 | 4 |
n | 4 | 2 | 1 |
m | 2 | 3 | 5 |
Vậy (m;n)=(2;4),(3;2),(5;1)
1 / a = 1/6 + b/ 3
<=> 1 / a = (1 + 2b ) / 6
<=> a (1+2b ) = 6
Do a,b là các số tự nhiên và 1 + 2b là số lẻ
=> a= 2 và 1 +2b = 3
=> a=2 và b = 1
vậy a=2 và b=1