K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2017

\(\left|2x-27\right|^{2017}+\left(3y+27\right)^{2016}=0\)

\(\Rightarrow\left|2x-27\right|^{2017}=0\)\(\left(3y+27\right)^{2016}=0\)

+) \(\left|2x-27\right|^{2017}=0\Rightarrow2x-27=0\Rightarrow2x=27\Rightarrow x=\frac{27}{2}\)

+) \(\left(3y+27\right)^{2016}=0\Rightarrow3y+27=0\Rightarrow3y=-27\Rightarrow y=-9\)

Vậy \(x=\frac{27}{2};y=-9\)

25 tháng 8 2016

ta có:

|2x-27|2017≥0

(3y+27)2016 ≥0

vậy |2x-27|2017+(3y+37)2016 ≥0

dấu "=" xảy ra khi

|2x-27|2017=(3y+27)2016=0

|2x-27|2017=0

=> 2x=27

=>x=27/2

(3y+27)2016=0

=> 3y=-27

=> y=-9

vậy với x=27/2 và y=-9 thì x,y thỏa mãn yêu cầu đề bài

24 tháng 8 2017

vì (x-2016)^2016 >= 0 vs mọi x

    (y-2017)^2018>= 0 vs mọi y

    /x+y-z/ >= 0 vs mọi x,y,z

mà (x-2016)^2016+(y-2017)^2018+/x-y+z/=\(\hept{\begin{cases}\left(x-2016\right)^{2016}=0\\^{\left(-2017\right)^{2018}}=0\\x+y-z=0\end{cases}}\)0 nên ​\(\hept{\begin{cases}x-2016=0\\y-2017=0\\x+y-z\end{cases}}\)\(\hept{\begin{cases}x=2016\\y=2017\\x+y-z=0\end{cases}}\)

24 tháng 8 2017

mà x+y=2016+2017=4033

\(\Rightarrow\)4033-z=0

z=4033

vậy x=2016 y=2017 z=4033

4 tháng 7 2017

Vì 2016(x-1)2016 + 2017(y-1)2018 = 0

Mà    2016(x-1)2016  \(\ge\)0     ;     2017(y-1)2018 \(\ge\)0

=> 2016(x-1)2016 = 2017(y-1)2018 =0

=> x-1 = y-1 = 0

=> x=y=1

21 tháng 10 2016

vì giá trị tuyệt đối không nhận giá trị âm nên

x-2015=0;x-2016=0;y2017=0;y-2018=0

=>x=2015;x=2016;y=2017;y=2018

Vì x và y không nhận hai giá trị cùng một lúc nên x y không tồn tại

 

DD
16 tháng 1 2021

1) \(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\frac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}=1-\frac{1}{\left|x-2016\right|+2018}\)

\(A\)nhỏ nhất nên \(\frac{1}{\left|x-2016\right|+2018}\)lớn nhất nên \(\left|x-2016\right|+2018\)dương nhỏ nhất. 

mà \(\left|x-2016\right|+2018\ge2018\)

Dấu \(=\)khi \(x=2016\).

Vậy \(minA=1-\frac{1}{2018}=\frac{2017}{2018}\)đạt tại \(x=2016\).

2) \(x-2xy+y=0\)

\(\Leftrightarrow x\left(1-2y\right)+\frac{1}{2}-y-\frac{1}{2}=0\)

\(\Leftrightarrow\left(2x+1\right)\left(1-2y\right)=1=1.1=\left(-1\right).\left(-1\right)\)

Từ đây xét 2 trường hợp nha. Ra kết quả cuối cùng là: \(\left(x,y\right)\in\left\{\left(0,0\right),\left(1,1\right)\right\}\).

23 tháng 11 2017

Giúp mk với mọi người

\(\left(x-2008\right)^{2016}+\left(y-2009\right)^{2017}=0\)

\(\Rightarrow x-2008=0\Rightarrow x=2008\)

\(\Rightarrow y-2009=0\Rightarrow y=2009\)