Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = AB Tia phân giác góc B cắt A tại D
a, CM tam giác ABD = tam giác EBD
b, Tính số đo của góc BED
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xet ΔABD va ΔEBD co:
AB=EB(GT)
∠ABD = ∠EBD(BD la tia phan giac ∠ABE)
BD chung
⇒ΔABD = ΔEBD(c.g.c)
b)theo cau a co :ΔABD = ΔEBD
⇒DA=DE(2 canh tuong ung)
c)theo cau a co:ΔABD = ΔEBD
⇒∠BAD=∠BED( 2 goc tuong ung)
Ma ∠BAD=90do
⇒∠BED = 90do
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
b: Ta có: ΔABD=ΔEBD
=>DA=DE
=>D nằm trên đường trung trực của AE(1)
ta có: BA=BE
=>B nằm trên trung trực của AE(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE
=>BD\(\perp\)AE tại trung điểm của AE
c: Ta có: ΔBAD=ΔBED
=>\(\widehat{BAD}=\widehat{BED}\)
mà \(\widehat{BAD}=90^0\)
nên \(\widehat{BED}=90^0\)
=>DE\(\perp\)BC
Ta có: AH\(\perp\)BC
DE\(\perp\)BC
Do đó: AH//DE
d: Ta có: \(\widehat{EDC}+\widehat{ACB}=90^0\)(ΔEDC vuông tại E)
\(\widehat{ABC}+\widehat{ACB}=90^0\)(ΔABC vuông tại A)
Do đó: \(\widehat{EDC}=\widehat{ABC}\)
e: Xét ΔDAK vuông tại A và ΔDEC vuông tại E có
DA=DE
\(\widehat{ADK}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔDAK=ΔDEC
=>AK=EC và DK=DC
Ta có: BA+AK=BK
BE+EC=BC
mà BA=BE và AK=EC
nên BK=BC
=>B nằm trên đường trung trực của KC(3)
Ta có: DK=DC
=>D nằm trên đường trung trực của KC(4)
Ta có: MK=MC
=>M nằm trên đường trung trực của KC(5)
Từ (3),(4),(5) suy ra B,D,M thẳng hàng
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
BA=BE
=>ΔBAD=ΔBED
b: Xét ΔBAE có BA=BE và góc B=60 độ
nên ΔBAE đều
=>BE=AB=6cm
=>BC=12cm
a: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
\(d,\) Gọi \(AE\cap BD=\left\{H\right\}\)
\(\left\{{}\begin{matrix}\widehat{ABH}=\widehat{EBH}\\AB=AE\\BH\text{ chung}\end{matrix}\right.\Rightarrow\Delta ABH=\Delta EBH\left(c.g.c\right)\\ \Rightarrow\widehat{BHA}=\widehat{BHE}\\ \text{Mà }\widehat{BHE}+\widehat{BHA}=180^0\left(\text{kề bù}\right)\\ \Rightarrow\widehat{BHE}=\widehat{BHA}=90^0\\ \Rightarrow BH\bot AE\\ \Rightarrow BD\bot AE\)
a) Xét tam giác ABD và tam giác EBD:
+ AB = EB (gt).
+ BD chung.
+ \(\widehat{ABD}=\widehat{EBD}\) (BD là phân giác).
\(\Rightarrow\) Tam giác ABD = Tam giác EBD (c - g - c).
b) Tam giác ABD = Tam giác EBD (cmt).
\(\Rightarrow\) \(\widehat{BAD}=\widehat{BED}\) (2 góc tương ứng).
Mà \(\widehat{BAD}=90^o\) (Tam giác ABC vuông tại A).
\(\Rightarrow\) \(\widehat{BED}=90^o\)
c) Xét tam giác ABE: BA = BE (gt).
\(\Rightarrow\) Tam giác ABE cân tại B.
Mà BD là phân giác (gt).
\(\Rightarrow\) BD là đường cao (Tính chất tam giác cân).
\(\Rightarrow\) \(BD\perp AE.\)
`a)`
Có `BD` là p/g của `hat(ABC)(GT)=>hat(B_1)=hat(B_2)`
Xét `Delta ABD` và `DElta EBD` có :
`{:(BA=BE(GT),(hat(B_1)=hat(B_2)(cmt),(BD-chung):}}`
`=>Delta ABD=Delta EBD(c.g.c)(đpcm)`
`b)`
Có `Delta ABD=Delta EBD(cmt)=>hat(A)=hat(E_1)` ( 2 góc t/ứng )
mà `hat(A)=90^0`
nên `hat(E_1)=90^0(đpcm)`
`\color {blue} \text {_Namm_}`
`a,`
Xét Tam giác `ABD` và Tam giác `EBD` có:
`BA=BE (g``t)`
\(\widehat{ABD}=\widehat{EBD}\) `(` tia phân giác \(\widehat{ABE}\) `)`
`BD` chung
`=>` Tam giác `ABD =` Tam giác `EBD (c-g-c)`
`b,` Vì Tam giác `ABD =` Tam giác `EBD (a)`
`->`\(\widehat{BAD}=\widehat{BED}\) `(2` góc tương ứng `)`
Mà góc \(\widehat{A}\) vuông `(`\(\widehat{A}=90^0\) `)`
`-> `\(\widehat{BAD}=\widehat{BED}=90^0\)
`c,` Vì Tam giác `ABD =` Tam giác `EBD (a)`
`-> DE=DA (2` cạnh tương ứng `)`
Xét Tam giác `DEC:`
\(\widehat{DEC}=90^0\) `-> DC` là cạnh lớn nhất `-> DC>DE`
Mà `DE=DA -> DC>DA`
a)Xét tam giác ABD và tam giác EBD có:
AB=BE (gt)
\(\widehat{ABD}\)=\(\widehat{CBD}\)
BD là cạnh chung
Vậy \(\Delta ABD\)= \(\Delta EBD\)(c-g-c)
b) Vì \(\Delta ABD\)= \(\Delta EBD\)(cmt)
Nên \(\widehat{BAD}=\widehat{BED}\)= 90 độ
a , Xét tam giác ABD và tam giác EBD ta có :
cạnh BD chung
góc ABD= góc DBE [ BD là tia p/g của góc ABE ]
BA=BE [ gt ]
=> tam giác ABD = tam giác EBD [ c.g.c ]
b, Vì tam giác ABD= tam giác EBD [ cmt ]
=> góc A = góc EBD [ 2 góc tương ứng ]
Mà góc A = 90 độ
=> góc EBD = 90 độ
chúc bạn học tốt kết bạn với mình nha