K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2017

Do \(\left(ax^3+bx^2+c\right)⋮\left(x+2\right)\Rightarrow ax^3+bx^2+c=\left(x+2\right).Q\left(x\right)\)(*)

Thay x = - 2 vào (*) ta được :\(-8a+4b+c=0\)(1)

Do \(\left(ax^3+bx^2+c\right):\left(x^2-1\right)\text{dư}\text{ }x+5\)   \(\Rightarrow\left(ax^{\:3}+bx^2+c-x-5\right)⋮\left(x^2-1\right)\left[\text{ }\right]\)

\(\Rightarrow ax^3+bx^2-x+c-5=\left(x^2-1\right)G\left(x\right)\)(**)

Thay x = 1 vào (**) ta đc \(a+b+c-6=0\Rightarrow a+b+c=6\)(2)

Thay \(x=-1\) vào (**) ta đc \(-a+b-c-4=0\Leftrightarrow-a+b-c=4\)(3)

Từ (1);(2);(3) ta có phương trình : \(\hept{\begin{cases}-8a+4b+c=0\\a+b+c=6\\-a+b-c=4\end{cases}\Rightarrow\hept{\begin{cases}a=\frac{7}{3}\\b=5\\c=-\frac{4}{3}\end{cases}}}\)

DD
20 tháng 12 2021

\(f\left(x\right)=ax^3+bx+c\)

\(\hept{\begin{cases}f\left(-2\right)=0\\f\left(1\right)=1+5=6\\f\left(-1\right)=-1+5=4\end{cases}}\Leftrightarrow\hept{\begin{cases}-8a-2b+c=0\\a+b+c=6\\-a-b+c=4\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b=\frac{1}{2}\\c=5\end{cases}}\)

NV
18 tháng 1

Đặt \(f\left(x\right)=ax^3+bx^2+c\)

Do \(f\left(x\right)\) chia hết \(x+2\Rightarrow f\left(-2\right)=0\)

\(\Rightarrow-8a+4b+c=0\) (1)

Do \(f\left(x\right)\) chia \(x^2-1\) dư 5

\(\Rightarrow f\left(x\right)=g\left(x\right).\left(x^2-1\right)+5\) với \(g\left(x\right)\) là 1 đa thức bậc nhất nào đó

\(\Rightarrow ax^3+bx^2+c=g\left(x\right)\left(x^2-1\right)+5\) (*)

Thay \(x=1\) vào (*) \(\Rightarrow a+b+c=5\) (2)

Thay \(x=-1\) vào (*) \(\Rightarrow-a+b+c=5\) (3)

(1);(2);(3) \(\Rightarrow\left\{{}\begin{matrix}-8a+4b+c=0\\a+b+c=5\\-a+b+c=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=0\\b=-\dfrac{5}{3}\\c=\dfrac{20}{3}\end{matrix}\right.\)

10 tháng 11 2017

Chia đa thức cho đa thức,Xác định các hằng số a và b sao cho,x^4 + ax + b chia hết cho x^2 - 4,x^4 + ax^ + bx - 1 chia hết cho x^2 - 1,x^3 + ax + b chia hết cho x^2 + 2x - 2,Toán học Lớp 8,bài tập Toán học Lớp 8,giải bài tập Toán học Lớp 8,Toán học,Lớp 8

Chỉ ý kiến của mk thôi

chưa chắc đúng

Tham khảo nhé

24 tháng 2 2021

Vì \(f\left(x\right)⋮x-2;f\left(x\right):x^2-1\) dư 1\(\Rightarrow\left\{{}\begin{matrix}f\left(x\right)=g\left(x\right)\cdot\left(x-2\right)\\f\left(x\right)=q\left(x\right)\left(x^2-1\right)+x=q\left(x\right)\left(x-1\right)\left(x+1\right)+x\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=0\\f\left(1\right)=1\\f\left(-1\right)=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}32+4a+2b+c=0\\2+a+b+c=1\\2+a-b+c=-1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}4a+2b+c=-32\left(1\right)\\a+b+c=-1\left(2\right)\\a-b+c=-3\left(3\right)\end{matrix}\right.\)

 Trừ từng vế của (2) cho (3) ta được:

\(\Rightarrow2b=2\Rightarrow b=1\)

Thay b=1 vào lần lượt (1) ,(2),(3) ta được:

\(\Rightarrow\left\{{}\begin{matrix}4a+2+c=-32\\a+1+c=-1\\a-1+c=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a+c=-34\\a+c=-2\\a+c=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4a+c=-34\left(4\right)\\a+c=-2\left(5\right)\end{matrix}\right.\)

Trừ từng vế của (4) cho (5) ta được:

\(\Rightarrow3a=-32\Rightarrow a=-\dfrac{32}{3}\Rightarrow c=-2+\dfrac{32}{3}=\dfrac{26}{3}\) Vậy...