K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2018

\(ab+bc+ca=0\)

=>   \(\frac{ab+bc+ca}{abc}=0\)

=>  \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

Đặt:  \(\frac{1}{a}=x;\)\(\frac{1}{b}=y;\)\(\frac{1}{c}=z\)

Ta có:   \(x+y+z=0\)

=>  \(x^3+y^3+z^3=3xyz\)  (tự c/m, ko c/m đc ib)

hay  \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{3}{abc}\)

\(B=\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}=\frac{abc}{a^3}+\frac{abc}{b^3}+\frac{abc}{c^3}=abc.\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)

     \(=abc.\frac{3}{abc}=3\)

23 tháng 8 2018

thanks

NV
13 tháng 7 2020

\(a+b+c=abc\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=1\)

\(VT=\frac{x^2yz}{1+yz}+\frac{xy^2z}{1+zx}+\frac{xyz^2}{1+xy}=\frac{x^2yz}{xy+yz+yz+zx}+\frac{xy^2z}{xy+zx+yz+zx}+\frac{xyz^2}{xy+yz+xy+zx}\)

\(VT\le\frac{1}{4}\left(\frac{x^2yz}{xy+yz}+\frac{x^2yz}{yz+zx}+\frac{xy^2z}{xy+zx}+\frac{xy^2z}{yz+zx}+\frac{xyz^2}{xy+yz}+\frac{xyz^2}{xy+zx}\right)\)

\(VT\le\frac{1}{4}\left(\frac{x^2y}{x+y}+\frac{xy^2}{x+y}+\frac{y^2z}{y+z}+\frac{yz^2}{y+z}+\frac{x^2z}{x+z}+\frac{xz^2}{x+z}\right)\)

\(VT\le\frac{1}{4}\left(xy+yz+zx\right)=\frac{1}{4}\)

Dấu "=" xảy ra khi \(a=b=c=\sqrt{3}\)

9 tháng 3 2018

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{ab+ac}{2}=\frac{ba+bc}{3}=\frac{ca+cb}{4}=\frac{\left(ab+ac\right)+\left(ba+bc\right)-\left(ca+cb\right)}{2+3-4}=\frac{2ab}{1}\)

Tương tự \(\frac{ab+ac}{2}=\frac{bc+ba}{3}=\frac{ca+cb}{4}=\frac{2bc}{5}\)

\(\frac{ab+ac}{2}=\frac{ba+bc}{3}=\frac{ca+cb}{4}=\frac{2ac}{3}\)

Do đó \(\frac{2ab}{1}=\frac{2bc}{5}\Rightarrow\frac{a}{1}=\frac{c}{5}\Rightarrow\frac{a}{3}=\frac{c}{15}\)

\(\frac{2bc}{5}=\frac{2ac}{3}\Rightarrow\frac{b}{5}=\frac{a}{3}\)

Do vậy \(\frac{a}{3}=\frac{b}{5}=\frac{c}{15}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

ab+ac2=ba+bc3=ca+cb4=(ab+ac)+(ba+bc)−(ca+cb)2+3−4=2ab1

Tương tự ab+ac2=bc+ba3=ca+cb4=2bc5

ab+ac2=ba+bc3=ca+cb4=2ac3

Do đó 2ab1=2bc5⇒a1=c5⇒a3=c15

2bc5=2ac3⇒b5=a3

Do vậy 

3 tháng 11 2017

Áp dụng BĐT AM-GM ta có:

\(VT=\dfrac{c+ab}{a+b}+\dfrac{a+bc}{b+c}+\dfrac{b+ac}{a+c}\)

\(=\dfrac{c\left(a+b+c\right)+ab}{a+b}+\dfrac{a\left(a+b+c\right)+bc}{b+c}+\dfrac{b\left(a+b+c\right)+ac}{a+c}\)

\(=\dfrac{ac+bc+c^2+ab}{a+b}+\dfrac{a^2+ab+ac+bc}{b+c}+\dfrac{ab+b^2+bc+ac}{a+c}\)

\(=\dfrac{\left(b+c\right)\left(c+a\right)}{a+b}+\dfrac{\left(a+b\right)\left(a+c\right)}{b+c}+\dfrac{\left(a+b\right)\left(b+c\right)}{a+c}\)

\(\ge2\left(a+b+c\right)=2\left(a+b+c=1\right)\)

Khi \(a=b=c=\dfrac{1}{3}\)

30 tháng 9 2018

bạn dùng bđt AM-GM nào vậy bạn?

lấy bút xóa mà xóa hết là khỏe

24 tháng 1 2016

\(botay.com.vn\)

17 tháng 1 2022
Ngu kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk