Cho hình thang ABCD ( AB//CD). GọiM,N,P,Q lần lượt là các trung điểm của các cạnh AB,AC,CD,BD
a)Tứ giác MNPQ là hình gì ? Vì sao ?
b)Nếu tứ giác ABCD là hình thang cân thì tứ giác MNPQ là hình gì ? Vì sao ?
c)Hình thang ABCD có thêm điều kiện gì để tứ giác MNPQ là hình vuông.
Tam giác BCD có :
BN = NC ( gt )
DP = PC ( gt )
\(\Rightarrow\)NP là đường trung bình tam giác BCD ( 1 )
Tam giác ADB có :
AQ = QD ( gt )
AM = MB ( gt )
\(\Rightarrow\)QM là đường trung bình tam giác ADB ( 2 )
Từ ( 1 ) , ( 2 ) suy ra NP = QM , NP // QM
\(\Rightarrow\)MNEF là hình bình hành ( đến đây bạn tự chứng minh tiếp hình thoi )
c) Để MNPQ là hình vuông thì ta chứng minh ABCD là hình thang cân có 2 đường chéo vuông góc với nhau