Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
Xét \(\Delta ABC\) có
MA=MB; NB=NC => MN là đường trung bình của \(\Delta ABC\Rightarrow MN=\frac{AC}{2}\) (1) và MN //AC (2)
Xét \(\Delta ADC\) có
QA=QD; PD=PC => PQ là đường trung bình của \(\Delta ABC\Rightarrow PQ=\frac{AC}{2}\) (3) Và PQ // AC (4)
Từ (1) Và (3) => MN=PQ; từ (2) và (4) => MN // PQ => MNPQ là hình bình hành (tứ giác có 1 cặp cạnh đối // và = nhau là hbh)
b/
Nếu MNPQ là hình chữ nhật \(\Rightarrow\widehat{QMN}=90^o\) (1)
Ta có MN // AC (2)
Xét tg ABD có
MA=MB; QA=QD => QM là đường trung bình của tg ABD => QM // BD (3)
Gọi O là giao của MP và NQ. Từ (2) và (3) \(\Rightarrow\widehat{AOB}=\widehat{QMN}=90^o\) (Góc có cạnh tương ứng //)
\(\Rightarrow AC\perp BD\)
Vậy để MNPQ là HCN thì ABCD cần điều kiện là hai đường chéo vuông góc với nhau
c/
Nếu MNPQ là hình thoi => QM=MN (1)
Ta có QM là đường trung bình của tg ABD \(\Rightarrow QM=\frac{BD}{2}\) (2)
Ta cũng có \(MN=\frac{AC}{2}\left(cmt\right)\) (3)
Từ (1) (2) và (3) => AC=BD
Vậy để MNPQ là hình thoi thì ABCD cần điều kiện là hai đường chéo = nhau
Answer:
Hình bạn tự vẽ.
a, Ta xét tam giác ABC
\(AM=MB=\frac{1}{2}AB\)
\(BN=NC=\frac{1}{2}BC\)
\(\Rightarrow MN\) là đường trung bình của tam giác ABC
\(\Rightarrow\hept{\begin{cases}MN=\frac{1}{2}BC\\MN//AC\end{cases}}\)
Chứng minh tương tự, ta được
\(NP;PQ;QM\) lần lượt là đường trung bình của tam giác BCD; tam giác ACD; tam giác ABD
Ý này nếu trình bày trong vở viết bạn gộp tất cả vào một cái ngoặc "và" nhé.
\(NP=\frac{1}{2}BD\)
\(NP//BD\)
\(PQ=\frac{1}{2}AC\)
\(PQ//AC\)
\(QM=\frac{1}{2}BD\)
\(QM//BD\)
Do vậy: \(\hept{\begin{cases}MN//PQ;MN=PQ\\NP//QM;NP=QM\end{cases}}\)
Vậy MNPQ là hình bình hành
b, MNPQ là hình chữ nhật
\(\Rightarrow\widehat{MNP}=90^o\)
\(\Rightarrow MN\perp NP\)
Mà \(\hept{\begin{cases}MN//AC\\NP//BD\end{cases}}\Rightarrow AC\perp BD\)
Vậy tứ giác ABCD có hai đường chéo vuông góc thì MNPQ là hình chữ nhật
A B C D M N P Q
Tam giác BCD có :
BN = NC ( gt )
DP = PC ( gt )
\(\Rightarrow\)NP là đường trung bình tam giác BCD ( 1 )
Tam giác ADB có :
AQ = QD ( gt )
AM = MB ( gt )
\(\Rightarrow\)QM là đường trung bình tam giác ADB ( 2 )
Từ ( 1 ) , ( 2 ) suy ra NP = QM , NP // QM
\(\Rightarrow\)MNEF là hình bình hành ( đến đây bạn tự chứng minh tiếp hình thoi )
c) Để MNPQ là hình vuông thì ta chứng minh ABCD là hình thang cân có 2 đường chéo vuông góc với nhau
a: Xét ΔABD có AM/AB=AQ/AD
nên MQ//BD và MQ=BD/2
Xét ΔCBD có CN/CB=CP/CD
nên NP//BD và NP=BD/2
=>MQ//NP và MQ=NP
=>MNPQ là hình bình hành
b: Để mNPQ là hình chữ nhật thì MN vuông góc với MQ
=>AC vuông góc với BD
Để MNPQ là hình thoi thì MN=MQ
=>AC=BD
c: BD=3/2*AC=30cm
=>MQ=BD/2=15cm; MN=AC/2=10cm
SMNPQ=15*10=150cm2
http://lazi.vn/edu/exercise/cho-tu-giac-abcd-goi-m-n-p-q-lan-luot-la-trung-diem-cua-cac-canh-ab-cd-ad-bc-chung-minh-vecto-mp-qn-mq-pn . Bạn vào link này nhé