K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: M,N,P,Q lần lượt là trung điểm của AB,BC,CD,DA

a: AB//DC

\(P\in DC\)

Do đó: AB//DP

AB=DC/2

DP=DC/2=PC

Do đó: AB=DP=CP

Xét tứ giác ABPD có

AB//PD

AB=PD

Do đó: ABPD là hình bình hành

b: Xét ΔABC có

M,N lần lượt là trung điểm của BA,BC

=>MN là đường trung bình của ΔBAC

=>MN//AC và MN=AC/2(1)

Xét ΔADC có

Q,P lần lượt là trung điểm của DA,DC

=>QP là đường trung bình

=>QP//AC và QP=AC/2(2)

Từ (1) và (2) suy ra MN//PQ và MN=PQ

Xét tứ giác MNPQ có

MN//PQ

MN=PQ

Do đó: MNPQ là hình bình hành

c: ABPD là hình bình hành

=>AP cắt BD tại trung điểm của mỗi đường

=>E là trung điểm của AP và BD

Xét ΔADP có

Q,E lần lượt là trung điểm của AD,AP

=>QE là đường trung bình

=>QE//DP

=>QE//DC

Xét ΔBDC có

E,N lần lượt là trung điểm của BD,BC

=>EN là đường trung bình

=>EN//DC

EN//DC

QE//DC

mà QE và EN có điểm chung là E

nên Q,E,N thẳng hàng

17 tháng 12 2020

a) Xét tứ giác ABPD 

Có AB // = 1/2 DC

=> AB //=DC

=> ABPD là hbh

Xét tam giác ABC

Có MN là đường trung bình => MN //=1/2 AC

Xét tam giác ACD có

PQ là đường trung bình => PQ//=1/2 AC

=> MN//=PQ => MNPQ là hbh

b) HÌnh thang cân

c) Trung điểm đc của hình thoi cũng là trung điểm của đường chéo còn lại

Xét tam giác ADP : Có QE là đường tb => QE //DP

Xét tam giác BCD có EN là đường tb => EN // DC

=> Q,N,E thẳng hàng

a: Xét tứ giác ABPD có 

AB//PD

AB=PD

Do đó: ABPD là hình bình hành

Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình

=>MN//AC và MN=AC/2(1)

Xét ΔADC có 

Q là trung điểm của AD
P là trung điểm của CD

Do đó: QP là đường trung bình

=>QP//AC và QP=AC/2(2)

Từ (1) và (2) suy ra MN//PQ và MN=PQ

hay MNPQ là hình bình hành

b: Để MNPQ là hình thoi thì MN=MQ

hay AC=BD

27 tháng 10 2021

a: Xét tứ giác ABPD có 

AB//PD

AB=PD

Do đó: ABPD là hình bình hành

Xét ΔABD có 

M là trung điểm của AB

Q là trung điểm của AD

Do đó: MQ là đường trung bình của ΔABD

Suy ra: MQ//BD và \(MQ=\dfrac{BD}{2}\left(1\right)\)

Xét ΔBCD có 

N là trung điểm của BC

P là trung điểm của CD

Do đó: NP là đường trung bình của ΔBCD

Suy ra: NP//BD và \(NP=\dfrac{BD}{2}\left(2\right)\)

Từ (1) và (2) suy ra MQ//NP và MQ=NP

hay MQPN là hình bình hành

28 tháng 10 2021

Cám ơn

 

5 tháng 11 2017

Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

tôi mong các bn đừng làm như vậy nah ^_^

19 tháng 12 2017

A B C D M N P Q

Tam giác BCD có :

BN = NC ( gt )

DP = PC ( gt )

\(\Rightarrow\)NP là đường trung bình tam giác BCD ( 1 )

Tam giác ADB có :

AQ = QD ( gt )

AM = MB ( gt )

\(\Rightarrow\)QM là đường trung bình tam giác ADB ( 2 )

Từ ( 1 ) , ( 2 ) suy ra NP = QM , NP // QM

\(\Rightarrow\)MNEF là hình bình hành ( đến đây bạn tự chứng minh tiếp hình thoi )

c) Để MNPQ là hình vuông thì ta chứng minh ABCD là hình thang cân có 2 đường chéo vuông góc với nhau 

18 tháng 12 2022

a: Xét ΔABD có AM/AB=AQ/AD

nên MQ//BD và MQ=BD/2

Xét ΔCBD có CN/CB=CP/CD

nên NP//BD và NP=BD/2

=>MQ//PN và MQ=PN

=>MNPQ là hình bình hành

Xét ΔBAC có BM/BA=BN/BC

nên MN//AC và MN=AC/2

=>MN vuông góc với NP

=>MNPQ là hình chữ nhật

b: Để MNPQ là hình vuông thì MN=NP

=>AC=BD