K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2021

thank you :33

 

29 tháng 10 2021

a, Dễ thấy ADHE là hcn nên \(AH=DE\)

Mà AH là hình chiếu từ A tới BC nên \(AH\le AM\)

Do đó \(DE\le AM\)

Mà AM là tt ứng cạnh huyền BC nên \(AM=\dfrac{1}{2}BC\)

Vậy \(DE\le\dfrac{1}{2}BC\)

19 tháng 11 2022

a: Xét tứ giác ADHE có

góc ADH=góc AEH=góc DAE=90 độ

nên ADHElà hình chữ nhật

=>góc AED=góc AHD=góc ABC

Ta có: ΔABC vuông tại A

mà AM là trung tuyến

nên MA=MC=MB

=>góc MAC=góc MCA

=>góc MAC+góc AED=90 độ

=>AM vuông góc với DE

b: HE//AB

=>HN//AB

mà góc NAB=góc HBA

nên NHBA là hình thang cân

=>góc ANB=góc AHB=90 độ

=>BN vuông góc với AM

=>BN//DE

a: góc DAB=90 độ-góc BAM=góc CAM

mà góc CAM=góc C

nên góc DAB=góc C

=>góc DAB=góc HAB

=>AB là phân giác của góc DAH

b: AB vuông góc AC

=>AC là phân giác góc ngoài tại đỉnh A của ΔADH

=>BD/BH=AD/AH=CD/CH

=>BD*CH=BH*CD

15 tháng 11 2023

a: ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(BC^2=6^2+8^2=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot10=6\cdot8=48\)

=>AH=48/10=4,8(cm)

Xét ΔABC vuông tại A có

\(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\)

nên \(\widehat{C}\simeq37^0\)

ΔABC vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\widehat{ABC}=90^0-37^0=53^0\)

b: ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MC=MB=BC/2

Xét ΔMAC có MA=MC

nên ΔMAC cân tại M

=>\(\widehat{MAC}=\widehat{MCA}=\widehat{ACB}\left(1\right)\)

\(\widehat{ACB}+\widehat{ABC}=90^0\)(ΔABC vuông tại A)

\(\widehat{HAB}+\widehat{ABH}=90^0\)(ΔABH vuông tại H)

Do đó: \(\widehat{ACB}=\widehat{HAB}\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{MAC}=\widehat{HAB}\)

c: Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

=>AEHF là hình chữ nhật

=>\(\widehat{AFE}=\widehat{AHE}\)

mà \(\widehat{AHE}=\widehat{ABC}\left(=90^0-\widehat{HAB}\right)\)

nên \(\widehat{AFE}=\widehat{ABC}\)

\(\widehat{AFE}+\widehat{MAC}\)

\(=\widehat{ABC}+\widehat{ACB}=90^0\)

=>FE vuông góc AM tại K

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}BH=\dfrac{6^2}{10}=3,6\left(cm\right)\\CH=\dfrac{8^2}{10}=6,4\left(cm\right)\end{matrix}\right.\)

Xét ΔHAB vuông tại H có HE là đường cao

nên \(HA^2=AE\cdot AB\)

=>\(AE\cdot6=4,8^2\)

=>\(AE=3,84\left(cm\right)\)

Xét ΔHAC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\)

=>\(AF=\dfrac{4.8^2}{8}=2,88\left(cm\right)\)

Xét ΔAEF vuông tại A có AK là đường cao

nên \(\dfrac{1}{AK^2}=\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\)

=>\(\dfrac{1}{AK^2}=\dfrac{1}{2,88^2}+\dfrac{1}{3.84^2}\)

=>AK=2,304(cm)

a) Xét ΔABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC(gt)

nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về đường trung bình của tam giác)

mà \(BM=\dfrac{BC}{2}\)(M là trung điểm của BC)

nên AM=BM

Xét ΔMBA có MA=MB(cmt)

nên ΔMBA cân tại M(Định nghĩa tam giác cân)

\(\Leftrightarrow\widehat{MAB}=\widehat{MBA}\)(hai góc ở đáy)

\(\Leftrightarrow\widehat{MAB}=\widehat{HBA}\)(1)

Ta có: ΔAHB vuông tại H(AH\(\perp\)BC tại H)

nên \(\widehat{HBA}+\widehat{HAB}=90^0\)(hai góc nhọn phụ nhau)(2)

Ta có: \(\widehat{BAM}+\widehat{BAD}=\widehat{MAD}\)(tia AB nằm giữa hai tia AM,AD)

hay \(\widehat{BAM}+\widehat{BAD}=90^0\)(3)

Từ (1), (2) và (3) suy ra \(\widehat{BAH}=\widehat{BAD}\)

mà tia AB nằm giữa hai tia AH,AD

nên AB là tia phân giác của \(\widehat{DAH}\)(đpcm)

Xét tứ giác AEHF có

góc AEH=góc AFH=góc FAE=90 độ

=>AEHF là hình chữ nhật

=>EF=AH

a) Ta có: ΔABH vuông tại H(AH⊥BC)

nên \(\widehat{HAB}+\widehat{ABH}=90^0\)(hai góc nhọn phụ nhau)

hay \(\widehat{HAB}+\widehat{ABM}=90^0\)(1)

Ta có: tia AB nằm giữa hai tia AD,AM(gt)

nên \(\widehat{DAB}+\widehat{MAB}=\widehat{MAD}\)

hay \(\widehat{DAB}+\widehat{MAB}=90^0\)(2)

Ta có: ΔABC vuông tại A(gt)

mà AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)

nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(BM=\dfrac{BC}{2}\)(M là trung điểm của BC)

nên AM=BM

Xét ΔABM có AM=BM(cmt)

nên ΔABM cân tại M(Định nghĩa tam giác cân)

\(\widehat{MBA}=\widehat{MAB}\)(hai góc ở đáy)(3)

Từ (1), (2) và (3) suy ra \(\widehat{HAB}=\widehat{DAB}\)

mà tia AB nằm giữa hai tia AH,AD

nên AB là tia phân giác của \(\widehat{DAH}\)(đpcm)