tam giác ABC vuông tại A, AB>BC đường cao AH, trung tuyến AM. Vẽ AI vuông góc với AM; CI vuông góc với CB. ME song song AB ( E thuộc AC); AK song song BC ( K thuộc CI). a) AHCK là hình gì? b) Ch/m E thuộc HK; E thuộc MI c) BI cắt AH tại D. Ch/m AD=DH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Dễ thấy ADHE là hcn nên \(AH=DE\)
Mà AH là hình chiếu từ A tới BC nên \(AH\le AM\)
Do đó \(DE\le AM\)
Mà AM là tt ứng cạnh huyền BC nên \(AM=\dfrac{1}{2}BC\)
Vậy \(DE\le\dfrac{1}{2}BC\)
a: Xét tứ giác ADHE có
góc ADH=góc AEH=góc DAE=90 độ
nên ADHElà hình chữ nhật
=>góc AED=góc AHD=góc ABC
Ta có: ΔABC vuông tại A
mà AM là trung tuyến
nên MA=MC=MB
=>góc MAC=góc MCA
=>góc MAC+góc AED=90 độ
=>AM vuông góc với DE
b: HE//AB
=>HN//AB
mà góc NAB=góc HBA
nên NHBA là hình thang cân
=>góc ANB=góc AHB=90 độ
=>BN vuông góc với AM
=>BN//DE
a: góc DAB=90 độ-góc BAM=góc CAM
mà góc CAM=góc C
nên góc DAB=góc C
=>góc DAB=góc HAB
=>AB là phân giác của góc DAH
b: AB vuông góc AC
=>AC là phân giác góc ngoài tại đỉnh A của ΔADH
=>BD/BH=AD/AH=CD/CH
=>BD*CH=BH*CD
a: ΔABC vuông tại A
=>\(BC^2=AB^2+AC^2\)
=>\(BC^2=6^2+8^2=100\)
=>\(BC=\sqrt{100}=10\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot10=6\cdot8=48\)
=>AH=48/10=4,8(cm)
Xét ΔABC vuông tại A có
\(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\)
nên \(\widehat{C}\simeq37^0\)
ΔABC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ABC}=90^0-37^0=53^0\)
b: ΔABC vuông tại A
mà AM là đường trung tuyến
nên MA=MC=MB=BC/2
Xét ΔMAC có MA=MC
nên ΔMAC cân tại M
=>\(\widehat{MAC}=\widehat{MCA}=\widehat{ACB}\left(1\right)\)
\(\widehat{ACB}+\widehat{ABC}=90^0\)(ΔABC vuông tại A)
\(\widehat{HAB}+\widehat{ABH}=90^0\)(ΔABH vuông tại H)
Do đó: \(\widehat{ACB}=\widehat{HAB}\left(2\right)\)
Từ (1) và (2) suy ra \(\widehat{MAC}=\widehat{HAB}\)
c: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
=>AEHF là hình chữ nhật
=>\(\widehat{AFE}=\widehat{AHE}\)
mà \(\widehat{AHE}=\widehat{ABC}\left(=90^0-\widehat{HAB}\right)\)
nên \(\widehat{AFE}=\widehat{ABC}\)
\(\widehat{AFE}+\widehat{MAC}\)
\(=\widehat{ABC}+\widehat{ACB}=90^0\)
=>FE vuông góc AM tại K
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}BH=\dfrac{6^2}{10}=3,6\left(cm\right)\\CH=\dfrac{8^2}{10}=6,4\left(cm\right)\end{matrix}\right.\)
Xét ΔHAB vuông tại H có HE là đường cao
nên \(HA^2=AE\cdot AB\)
=>\(AE\cdot6=4,8^2\)
=>\(AE=3,84\left(cm\right)\)
Xét ΔHAC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\)
=>\(AF=\dfrac{4.8^2}{8}=2,88\left(cm\right)\)
Xét ΔAEF vuông tại A có AK là đường cao
nên \(\dfrac{1}{AK^2}=\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\)
=>\(\dfrac{1}{AK^2}=\dfrac{1}{2,88^2}+\dfrac{1}{3.84^2}\)
=>AK=2,304(cm)
a) Xét ΔABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC(gt)
nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về đường trung bình của tam giác)
mà \(BM=\dfrac{BC}{2}\)(M là trung điểm của BC)
nên AM=BM
Xét ΔMBA có MA=MB(cmt)
nên ΔMBA cân tại M(Định nghĩa tam giác cân)
\(\Leftrightarrow\widehat{MAB}=\widehat{MBA}\)(hai góc ở đáy)
\(\Leftrightarrow\widehat{MAB}=\widehat{HBA}\)(1)
Ta có: ΔAHB vuông tại H(AH\(\perp\)BC tại H)
nên \(\widehat{HBA}+\widehat{HAB}=90^0\)(hai góc nhọn phụ nhau)(2)
Ta có: \(\widehat{BAM}+\widehat{BAD}=\widehat{MAD}\)(tia AB nằm giữa hai tia AM,AD)
hay \(\widehat{BAM}+\widehat{BAD}=90^0\)(3)
Từ (1), (2) và (3) suy ra \(\widehat{BAH}=\widehat{BAD}\)
mà tia AB nằm giữa hai tia AH,AD
nên AB là tia phân giác của \(\widehat{DAH}\)(đpcm)
Xét tứ giác AEHF có
góc AEH=góc AFH=góc FAE=90 độ
=>AEHF là hình chữ nhật
=>EF=AH
a) Ta có: ΔABH vuông tại H(AH⊥BC)
nên \(\widehat{HAB}+\widehat{ABH}=90^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{HAB}+\widehat{ABM}=90^0\)(1)
Ta có: tia AB nằm giữa hai tia AD,AM(gt)
nên \(\widehat{DAB}+\widehat{MAB}=\widehat{MAD}\)
hay \(\widehat{DAB}+\widehat{MAB}=90^0\)(2)
Ta có: ΔABC vuông tại A(gt)
mà AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)
nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
mà \(BM=\dfrac{BC}{2}\)(M là trung điểm của BC)
nên AM=BM
Xét ΔABM có AM=BM(cmt)
nên ΔABM cân tại M(Định nghĩa tam giác cân)
⇒\(\widehat{MBA}=\widehat{MAB}\)(hai góc ở đáy)(3)
Từ (1), (2) và (3) suy ra \(\widehat{HAB}=\widehat{DAB}\)
mà tia AB nằm giữa hai tia AH,AD
nên AB là tia phân giác của \(\widehat{DAH}\)(đpcm)