Tìm điểm M để cho pt: x+y-1=0 và cách N(-1;3) 1 khoảng bằng 5
Online chờ gấp!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x-y=2\Rightarrow y=x-2\). Thay vào pt đầu tiên, ta có:
\(\left(m-1\right)x+2\left(x-2\right)=m+1\)
\(\Leftrightarrow\left(m+1\right)x=m+5\)
Ta thấy \(m\) không thể bằng -1 được vì khi đó \(m+5=0\Leftrightarrow m=-5\), trong khi \(m\) không thể mang 2 giá trị cùng một lúc. Vì vậy, \(m\ne-1\). \(\Rightarrow x=\dfrac{m+5}{m+1}\)
\(\Rightarrow y=x-2=\dfrac{m+5}{m+1}-2\) \(=\dfrac{3-m}{m+1}\).
Từ đó, ta có \(xy=\dfrac{\left(m+5\right)\left(3-m\right)}{\left(m+1\right)^2}\).
Rõ ràng \(\left(m+1\right)^2>0\) nên để \(xy>0\) thì \(\left(m+5\right)\left(3-m\right)>0\) \(\Leftrightarrow-5< m< 3\)
Kết luận: Để hpt đã cho có nghiệm duy nhất \(x,y\) thỏa mãn ycbt thì\(-5< m< 3\) và \(m\ne-1\)
\(2)mx^2-2\left(m-1\right)x+m-1=0\)
Để pt có nghiệm kép \(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\\Delta=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\\left[-2\left(m-1\right)\right]^2-4m\left(m-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow4\left(m^2-2m+1\right)-4m^2+4m=0\)
\(\Leftrightarrow4m^2-8m+4-4m^2+4m=0\)
\(\Leftrightarrow-4m+4=0\)
\(\Leftrightarrow m=1\)
Vậy để pt trên có nghiệm kép thì \(\left\{{}\begin{matrix}m\ne0\\m=1\end{matrix}\right.\)
Đồ thị của hàm số (*) vừa tìm được có dạng là hàm số bậc 2 khuyết b và c tập hợp các điểm cách đều nhau qua một đường thẳng, đồ thị của hàm bậc 2 này có tên gọi là parabol.
1.
\(4x^3-6x^2+m=0\Leftrightarrow4x^3-6x^2=-m\)
Xét hàm \(f\left(x\right)=4x^3-6x^2\)
\(f'\left(x\right)=12x^2-12x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
BBT:
Từ BBT ta thấy đường thẳng \(y=-m\) cắt \(y=4x^3-6x^2\) tại 3 điểm pb khi:
\(-2< -m< 0\Leftrightarrow0< m< 2\)
2.
Pt hoành độ giao điểm:
\(\dfrac{x-3}{x+1}=x+m\)
\(\Rightarrow x-3=\left(x+m\right)\left(x+1\right)\)
\(\Leftrightarrow x^2+mx+m+3=0\) (1)
Đường thẳng cắt đồ thị tại 2 điểm pb khi và chỉ khi (1) có 2 nghiệm pb
\(\Leftrightarrow\Delta=m^2-4\left(m+3\right)>0\)
\(\Rightarrow\left[{}\begin{matrix}m>6\\m< -2\end{matrix}\right.\)
Gọi \(\Delta:x+y-1=0\)
\(M\in\Delta:x+y-1=0\)
\(\Rightarrow M\left(t;1-t\right)\)\(\Rightarrow\overrightarrow{MN}\left(-1-t;2+t\right)\)
Có \(MN=5\) \(\Rightarrow\left(-1-t\right)^2+\left(2+t\right)^2=25\)
\(\Leftrightarrow2t^2+6t-20=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=2\\t=-5\end{matrix}\right.\)
=>\(M\left(2;-1\right)\) hoặc \(M\left(-5;6\right)\)