CMR với mọi số nguyên n thì A=n^2+n+2015 không chia hết cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Nếu \(n=3k\left(k\in Z\right)\Rightarrow A=n^3-n=27k^3-3k⋮3\)
Nếu \(n=3k+1\left(k\in Z\right)\)
\(\Rightarrow A=n^3-n\)
\(=n\left(n-1\right)\left(n+1\right)\)
\(=\left(3k+1\right).3k.\left(3k+2\right)⋮3\)
Nếu \(n=3k+2\left(k\in Z\right)\)
\(\Rightarrow A=n^3-n\)
\(=n\left(n-1\right)\left(n+1\right)\)
\(=\left(3k+2\right)\left(n+1\right)\left(3k+3\right)⋮3\)
Vậy \(n^3-n⋮3\forall n\in Z\)
Giả sử ta có :n = 2 =>(n-1)(n+2)+2 không chia hết cho 9
=>(n-1)(n+2)+2 không chia hết cho 9 với mọi n !!!!!!!
Chắc chắn đúng !!!!!!!!!!!!!!
Ủng hộ mình nha bạn ơi !!!!!!!!!!!!!!!!!!!
Ta có:(n+2)(n-2)+12
Áp dụng hàm đảng thức vào biểu thức ta được:
n^2-2^2+12=n^2-4+12=n^2+8.
Xét trường hợp n^2 chia hết cho 9 thì:
n^2+8=9k+8(k thuộc Z)
=>n^2+8 chia cho 9 dư 1.
Xét trường hợp n^2 ko chia hết cho 9 thì:
n^2+8=9h+m+8(m=1,2,3,4,5,6,7,8)
Ta xét các trường hợp m=1,2,3,4,5,6,7,8
=>m=2,3,4,5,6,7,8 thì n^2+8 ko chia hết cho 9
Và m=1 thì n^2+8 chia hết cho 9(loại)
Vậy với mọi trường hợp thì (n+2)(n-2)+12 ko chia hết cho 9 (trừ tường hợp bị loại)
Ta có n² + n + 1 = n² + ( n + 1) = n(n+1) + 1
+ Giả sử : n chia hết cho 9
=> n² chia hết cho 9
=> (n + 1) không chia hết cho 9
=> n² + ( n + 1) không chia hết cho 9
+ Giả sử : ( n + 1) chia hết cho 9
=> n(n+1) chia hết cho 9
=> n(n+1) + 1 không chia hết cho 9
=> n² + ( n + 1) không chia hết cho 9
Nếu n chia hết cho 3 => n^2 chia hết cho 3 => A chia 3 dư 2
Nếu n chia 3 dư 1 => n^2 chia 3 dư 1 => A chia 3 dư 1
Nếu n chia 3 dư 2 => n^2 chia 3 dư 1 => A chia 3 dư 2
=> ĐPCM
k mk nha