Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
với n = 1 có : ( 1 + 1 ) chia hết cho 2
giả sử, với n = k thì ( k + 1 ) ( k + 2 ) ... 2k \(⋮\)2k
cần chứng minh đúng với n = k + 1
tức là ( k + 1 + 1 ) ( k + 1 + 2 ) ... 2 (k + 1 ) \(⋮\)2k+1
Ta có : ( k + 1 + 1 ) ( k + 1 + 2 ) ... 2 (k + 1 ) = ( k + 2 ) ( k + 3 ) ... 2k .2 ( k + 1 )
= 2 ( k + 1 ) ( k + 2 ) ... 2k \(⋮\)2.2k = 2k+1
vậy ta có đpcm
Giả sử ta có :n = 2 =>(n-1)(n+2)+2 không chia hết cho 9
=>(n-1)(n+2)+2 không chia hết cho 9 với mọi n !!!!!!!
Chắc chắn đúng !!!!!!!!!!!!!!
Ủng hộ mình nha bạn ơi !!!!!!!!!!!!!!!!!!!
Câu hỏi này là câu hỏi nâng cao nên rất khó
=>Nên hỏi dạy bộ môn Toán
a)(n-1).(n+2)+12 không chia hết cho 9
Giả sử tồn tại số nguyên n sao cho
(n-1).(n+2)+12 chia hết cho9
suy ra (n-1).(n+2)+12 chia hết cho 3
mà 12 chia hết cho 3
Nên (n-1).(n+2) chia hết cho 3 (1) (vì 3 là số nguyên tố )
ta có n-1-n+2=n-1-n-2=3
Mà 3 chia hêt cho 3
nên (n-1).(n+2) hoặc cùng chia hết cho 3,hoặc cùng không chia hết cho 3 (2)
Từ (1)và (2)suy ra n-1 chia hết cho 3 và n+2 chia hết cho3
Suy ra (n-1).(n+2) chia hết cho 3.3
Suy ra (n-1).(n+2) chia hết cho 9
Mà 12 không chia hết cho 9
Suy ra điều giả sử là sai
Suy ra (n-1).(n+2) không chia hết cho 9
vậy......
câu b làm tương tự
Ta có n² + n + 1 = n² + ( n + 1) = n(n+1) + 1
+ Giả sử : n chia hết cho 9
=> n² chia hết cho 9
=> (n + 1) không chia hết cho 9
=> n² + ( n + 1) không chia hết cho 9
+ Giả sử : ( n + 1) chia hết cho 9
=> n(n+1) chia hết cho 9
=> n(n+1) + 1 không chia hết cho 9
=> n² + ( n + 1) không chia hết cho 9