Cho tam giác ABC vuông tai A , gọi H là trung điểm của AC,E là trung điểm của BC , F là điểm đối xứng với E qua H.Chứng minh tứ giác AECF là hình thoi.Các bạn ơi làm ơn giúp mình với mai mình phải nộp bài rồi. Cảm ơn các bạn 😅😅😅
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
D là trung điểm của AC
E là trung điểm của BC
Do đó; DE là đường trung bình
=>DE//AB
Xét tứ giác ABED có DE//AB
nên ABED là hình thang
mà \(\widehat{DAB}=90^0\)
nên ABED là hình thang vuông
b: Xét tứ giác AECF có
D là trung điểm của AC
D là trung điểm của FE
Do đó: AECF là hình bình hành
mà EA=EC
nên AECF là hình thoi
c: Đề sai rồi bạn
a, xét tam giác ABC có đường t/b ED:
=>ED//AB
xét tứ giác ABED có :
ED//AB
BAC = 90\(^o\)
vậy ABED là hình thang vuông.
b, vì F đối xứng với E qua D nên:
ED=DF(1)
vì D là trung điểm AC nên:
AD=DC(2)
từ (1) và (2) suy ra :
tứ giác AECF là hình thoi.
c,vì ED //AB
mà AB vuông góc Ac
=>ED vuông góc AC
<=>EDA là góc vuông
xét tứ giác ABEH có :
\(EHA=BAC=EDA=90^o\)
vậy ABEH là hình chữ nhật.
a: Xét ΔABC có
D là trung điểm của AC
E là trung điểm của BC
Do đó: DE là đường trung bình
=>DE//AB và DE=AB/2
Xét tứ giác ADEB có DE//AB
nên ADEB là hình thang
mà \(\widehat{DAB}=90^0\)
nên ADEB là hình thang vuông
b: Xét tứ giác AECF có
D là trung điểm của AC
D là trung điểm của FE
Do đó: AECF là hình bình hành
mà EA=EC
nên AECF là hình thoi
a: Xét tứ giác ABDC có
E là trung điểm của đường chéo BC
E là trung điểm của đường chéo AD
Do đó: ABDC là hình bình hành
mà \(\widehat{CAB}=90^0\)
nên ABDC là hình chữ nhật
b: Ta có: ΔABC vuông tại A
mà AE là đường trung tuyến ứng với cạnh huyền BC
nên AE=BE=CE
Xét tứ giác AECF có
N là trung điểm của đường chéo FE
N là trung điểm của đường chéo AC
Do đó: AECF là hình bình hành
mà AE=CE
nên AECF là hình thoi
a: Xét tứ giác BFCE có
D là trung điểm của BC
D là trung điểm của FE
Do đó: BFCE là hình bình hành
a) xét tam giác ABC có:
. D là trung điểm của AB (gt)
. E là tđ của BC (gt)
vậy: DE là đường trung bình của tam giác ABC
--> DE//AC VÀ DE=\(\frac{AC}{2}\)
--> ACED là hình thang ( tứ giác có 2 cạnh đói //)
mà góc BAC=900 (tam giác ABC vuông tại A)
--> ACED là hình thang vuông( hình thang có 1 góc vuông)
b) Ta có: F đối xứng với E qua D (gt)
--> D là trung điểm của EF
--> EF=2DE
Ta lại có: DE=\(\frac{AC}{2}\) (cmt)
--> AC=2DE
Xét tứ giác ACEF có:
. DE//AC ( cmt)
--> EF//AC (D ϵ EF)
. EF=AC ( cùng = 2DE )
Vậy: ACEF là hbh (tứ giác có 2 cạnh đối vừa //, vừa = nhau)
c) Ta có: E là tđ của BC (gt)
--> CE=\(\frac{BC}{2}\) (1)
Ta lại có: E là tđ của BC (gt)
--> AE là đường trung tuyến
--> AE=\(\frac{BC}{2}\)
Xét tứ giác AEBF có:
.D là tđ của AB (gt)
. D là tđ của EF (cmt)
Vậy: AEBF là hbh( tứ giác có 2 đường chéo cắt nhau tại tđ của mỗi đường)
Ta có: AE= BF ( cạnh đối hbh AEBF)
mà AE=\(\frac{BC}{2}\) (cmt)
--> BF=\(\frac{BC}{2}\) (cùng = AE) (2)
Từ(1) và (2)
--> CE=BF (cùng =\(\frac{BC}{2}\) )
- Cách chứng minh của mình hơi dài nha ^.^