Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABDC có
E là trung điểm của đường chéo BC
E là trung điểm của đường chéo AD
Do đó: ABDC là hình bình hành
mà \(\widehat{CAB}=90^0\)
nên ABDC là hình chữ nhật
b: Ta có: ΔABC vuông tại A
mà AE là đường trung tuyến ứng với cạnh huyền BC
nên AE=BE=CE
Xét tứ giác AECF có
N là trung điểm của đường chéo FE
N là trung điểm của đường chéo AC
Do đó: AECF là hình bình hành
mà AE=CE
nên AECF là hình thoi
a, Trong △ABC có:
D là trung điểm của BC, E là trung điểm của AC.
⇒ DE là đường trung bình của △ABC.
⇒ DE = 1/2AB (1)
và: DE // AB (2)
Từ (1) suy ra: DE = 1/2 . 6 = 3.
b, Ta có: F là điểm đối xứng với D qua E nên:
DE = DF
⇒ DF = 2DE = 2 . 1/2AB = AB (3) (theo (1)
Từ (2),(3) suy ra: ABDF là hình bình hành.
c, Do ABDF là hình bình hành nên:
AF // BD (4) và: AF = BD
Mặt khác, ta có: D là trung điểm của BC
=> BD = BC. Mà: AF = BD (cmt)
=> BC = AF (5).
Từ (4) và (5) suy ra: Tứ giác ADCF là hình bình hành.
Ta lại có: AB⊥AC (góc A = 90o)
và: AB // DF
⇒ AC⊥DF.
Vậy, hình bình hành ADCF có hai đường chéo vuông góc hay:
ADCF là hình thoi.
Ta có: ADCF là hình thoi ⇒AE = 1/2AC = 4.
Xét △ADE có: góc E = 90∘ (AC⊥DF)
⇒ AE2 + DE2 = AD2 (Định lý Pythagore)
thay số: 42 + 32 = AD2
16 + 9 = AD2
25 = AD2 => AD = 5 cm.
d, Để ADCF là hình vuông thì: AD⊥BC.
Mà: DC = DB = 1/2BC (gt) nên:
AD⊥BC khi và chỉ khi AD là đường trung trực của BC hay:
AB = AC
=> △ABC vuông cân tại A.
Vậy, điều kiện để ADCF là hình vuông là △ABC vuông cân tại A
a: Xét ΔABC có
D là trung điểm của AC
E là trung điểm của BC
Do đó; DE là đường trung bình
=>DE//AB
Xét tứ giác ABED có DE//AB
nên ABED là hình thang
mà \(\widehat{DAB}=90^0\)
nên ABED là hình thang vuông
b: Xét tứ giác AECF có
D là trung điểm của AC
D là trung điểm của FE
Do đó: AECF là hình bình hành
mà EA=EC
nên AECF là hình thoi
c: Đề sai rồi bạn
a, xét tam giác ABC có đường t/b ED:
=>ED//AB
xét tứ giác ABED có :
ED//AB
BAC = 90\(^o\)
vậy ABED là hình thang vuông.
b, vì F đối xứng với E qua D nên:
ED=DF(1)
vì D là trung điểm AC nên:
AD=DC(2)
từ (1) và (2) suy ra :
tứ giác AECF là hình thoi.
c,vì ED //AB
mà AB vuông góc Ac
=>ED vuông góc AC
<=>EDA là góc vuông
xét tứ giác ABEH có :
\(EHA=BAC=EDA=90^o\)
vậy ABEH là hình chữ nhật.
a: Xét ΔABC có
D là trung điểm của AC
E là trung điểm của BC
Do đó: DE là đường trung bình
=>DE//AB và DE=AB/2
Xét tứ giác ADEB có DE//AB
nên ADEB là hình thang
mà \(\widehat{DAB}=90^0\)
nên ADEB là hình thang vuông
b: Xét tứ giác AECF có
D là trung điểm của AC
D là trung điểm của FE
Do đó: AECF là hình bình hành
mà EA=EC
nên AECF là hình thoi
a: Xét tứ giác AEDF có
\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)
Do đó: AEDF là hình chữ nhật