giúp mình với mn ơi
Chứng tỏ rằng n . (n + 13) chia hết cho 2 với mọi số tự nhiên n.
SOS Giúp minh đi mọi người.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có vì n\(\in\)N
+) TH1 :n là số lẻ=>n+13\(⋮\)2=>n.(n+13)\(⋮\)2
+)TH2 :n là số chẵn =>n\(⋮\)2=>n.(n+13)\(⋮\)2
vậy n.(n+13)\(⋮\)2 với \(\forall\)n\(\in\)N
Ta có n có thể là chẫn hoặc lẻ
Nếu n chẵn thì n = 2k
Thay vào ta có : (2k + 4)(2k + 5) = 2.(k + 2)(2k + 5) chia hết cho 2
Nếu n lẻ thì n = 2k + 1
Thay vào ta có: (2k + 5)(2k + 6) = 2.(2k + 5)(k + 3) chia hết cho 2
Vậy với mội số tự nhiên n (n + 4)(n + 5) đều chia hết cho 2
Vì tích trên là tích của 2 số tự nhiên liên tiếp nên luôn luôn tận cùng là 0,2.6.
Mà các số có tận cùng là 0,2,6 đều chia hết cho 2 nên tích (n+4)(n+5)luôn luôn chia hết cho 2.
Có 2 trường hợp
1 . Với k là số chẵn (2k với k thuộc N) ta có
2k.(2k + 5)
= 4 k
2 +10 k
= 2.(2k
2 + 5k) [ chia hết cho 2]
2 . Với k là số lẻ ( 2k + 1 với k thuộc N) ta có
(2k +1) ( 2k + 1 + 5)
= 2k.(2k+6) + 2k + 6
= 4k
2 + 12k + 2k + 6
= 2. ( 2k
2 + 6k + k + 3) [ chia hết cho 2]
* Nếu n lẻ :
\(\Rightarrow\)\(n+5\) chẵn
Mà tích của 1 số chẵn và 1 số lẻ chia hết cho 2 nên \(n\left(n+5\right)⋮2\)
* Nếu n chẵn :
\(\Rightarrow\)\(n+5\) lẻ
Mà tích của 1 số chẵn và 1 số lẻ chia hết cho 2 nên \(n\left(n+5\right)⋮2\)
Vậy với mọi số tự nhiên n thì \(n\left(n+5\right)⋮2\)
Chúc bạn học tốt ~
Cái này mình làm không chắc chắn đâu nha !
10^n lúc nào chia 9 cũng dư 1(100 : 9 dư 1; 1000 chia 9 dư 1.....)
18 chia hết cho 9 => 18n chia hết cho 9
Vậy A= 10^n+18n-1 chia hết cho 9
Mà số chia hết cho 9 là chia hết cho 81 nên A chia hết cho 81
chúng minh A là số chính phương mà chia hết cho 9 ý
Ta có
kết quả là:
Nếu n + 3 là số chẵn
=> ( n + 3 ) ( n + 6 ) chia hết cho 2
Nếu n + 6 là số chẵn
=> ( n + 3 ) ( n + 6 ) chia hết cho 2
Nếu n+3 là số chẵn thì\(\Rightarrow\)(n+3)(n+6) chia hết cho 2
Nếu n+6 là số chẵn thì (n+3)(n+6) chia hết cho 2
tk tôi nha
Một số chia hết cho 2 khi và chỉ khi số đó là số chẵn. Do đó, chúng ta cần chứng minh rằng n⋅(n+13)n \cdot (n + 13)n⋅(n+13) là một số chẵn với mọi nnn, tức là một trong hai số nnn hoặc n+13n + 13n+13 phải là số chẵn.
Bước 2: Xét các trường hợp về tính chẵn lẻ của nnnChúng ta sẽ phân tích theo hai trường hợp: nnn là số chẵn hoặc nnn là số lẻ.
Trường hợp 1: nnn là số chẵnDù nnn là số chẵn hay số lẻ, một trong hai số nnn hoặc n+13n + 13n+13 luôn là số chẵn. Do đó, tích n⋅(n+13)n \cdot (n + 13)n⋅(n+13) luôn chia hết cho 2 với mọi số tự nhiên nnn.
Vậy ta đã chứng minh xong rằng n⋅(n+13)n \cdot (n + 13)n⋅(n+13) chia hết cho 2 với mọi số tự nhiên nnn.
5 bạn