K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2017

Áp dụng bất đẳng thứ Cauchy (AM-GM):

\(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\ge3\sqrt[3]{\frac{\left(xyz\right)^2}{xyz}}=3\sqrt[3]{xyz}\)

Mà: \(0\le xyz\le1\Leftrightarrow xyz=1\)

Từ đó: \(\hept{\begin{cases}xy=\frac{1}{z}\\\frac{xy}{z}\end{cases}\Leftrightarrow\frac{1}{z^2}}\)  (1)

Tương tự: \(\hept{\begin{cases}yz=\frac{1}{x}\\\frac{yz}{x}\end{cases}\Leftrightarrow\frac{1}{x^2}}\)  (2) 

Và:  \(\hept{\begin{cases}zx=\frac{1}{y}\\\frac{zx}{y}\end{cases}}\Leftrightarrow\frac{1}{y^2}\)  (3) 

Từ trên (1)(2)(3): \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=3\) (Dạng Bunhiacopxki)

Dấu "=" xảy ra khi \(\Leftrightarrow x=y=z=1\)

19 tháng 11 2017

Cô si 3 số đó lại đi

5 tháng 5 2020

điều kiện : x,y,z khác 0

Ta có : \(3=\frac{yz}{x}+\frac{xz}{y}+\frac{xy}{z}=\frac{y^2z^2+x^2z^2+x^2y^2}{xyz}>0\)

Mà \(y^2z^2+x^2z^2+x^2y^2>0\Rightarrow xyz>0\)

\(\Rightarrow\frac{yz}{x},\frac{xz}{y},\frac{xy}{z}>0\)

Áp dụng BĐT Cô-si cho 3 số dương,ta có :

\(3=\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\ge3\sqrt[3]{xyz}\ge3\)

Dấu "=" xảy ra khi | x | = | y | = | z |

Do đó : \(3=3\sqrt[3]{xyz}\)

\(\Rightarrow\hept{\begin{cases}xyz=1\\\left|x\right|=\left|y\right|=\left|z\right|\end{cases}}\)

+) Trường hợp x,y,z > 0 ta được x = y = z = 1

+) trường hợp hai trong 3 số x,y,z là số âm, ta có ( x; y ; z ) = ( 1 ; -1 ; -1 ) và các hoán vị

vậy....

4 tháng 9 2019

a) ĐKXĐ: \(x;y>0\)  

 Ta có:\(\frac{1}{x}+\frac{1}{y}=\frac{1}{4}\)

\(\Rightarrow\frac{4y}{4xy}+\frac{4x}{4xy}=\frac{xy}{4xy}\)

\(\Rightarrow4x+4y-xy=0\)

\(\Rightarrow x\left(4-y\right)=-4y\)

\(\Rightarrow x=\frac{-4y}{4-y}=\frac{-4\left(y-4\right)-16}{-\left(y-4\right)}\)

\(\Rightarrow x=4-\frac{16}{4-y}\)

Để x nguyên dương =>\(\hept{\begin{cases}\frac{16}{4-y}< 0\\\left(4-y\right)\inƯ\left(16\right)\end{cases}}\)

\(\Rightarrow4-y\in\left\{\pm1;\pm2;\pm4;\pm8;\pm16\right\}\)

Tìm nốt y và thay vào tìm ra x

5 tháng 9 2019

a/ \(\frac{1}{x}+\frac{1}{y}=\frac{1}{4}\)

Không mất tính tổng quát giả sử: \(x\ge y\)

\(\frac{1}{4}=\frac{1}{x}+\frac{1}{y}\le\frac{2}{y}\)

\(\Leftrightarrow0< y\le8\)

\(\Rightarrow y=\left\{1;2;3;4;5;6;7;8\right\}\)làm nốt

4 tháng 1 2016

ban copy link nay :http://olm.vn/hoi-dap/question/305600.html roi vao google tra la có

 

5 tháng 1 2021
Bạn tham khảo lời giải của tớ nha!

Bài tập Tất cả

17 tháng 10 2020

Ta có phương trình \(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2=3xyz\ge0\)

Ta lại có \(x^2y^2+y^2z^2+z^2x^2\ge3\sqrt[3]{\left(xyz\right)^4}=3xyz\sqrt[3]{xyz}\)

\(\Rightarrow3xyz\ge3xyz\sqrt[3]{xyz}\)

\(\Leftrightarrow1\ge\sqrt[3]{xyz}\ge0\)

\(\Leftrightarrow1\ge xyz>0\)

Vì x,y,z nguyên 

=> xyz=1

Vậy x,y,z là \(\left\{1,1,1;1,-1,-1;-1,-1,1;-1,1,-1\right\}\)

Cre: @tpokemont

NV
26 tháng 2 2020

\(\sqrt{\frac{xy}{xy+z}}=\sqrt{\frac{xy}{xy+z\left(x+y+z\right)}}=\sqrt{\frac{xy}{\left(x+z\right)\left(y+z\right)}}\le\frac{1}{2}\left(\frac{x}{x+z}+\frac{y}{y+z}\right)\)

Tương tự: \(\sqrt{\frac{yz}{yz+x}}\le\frac{1}{2}\left(\frac{y}{x+y}+\frac{z}{x+z}\right)\) ; \(\sqrt{\frac{zx}{zx+y}}\le\frac{1}{2}\left(\frac{x}{x+y}+\frac{z}{y+z}\right)\)

Cộng vế với vế ta có đpcm

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

NV
16 tháng 3 2020

\(Q=\frac{1}{\frac{x}{y}+\frac{z}{x}+1}+\frac{1}{\frac{y}{z}+\frac{x}{y}+1}+\frac{1}{\frac{z}{x}+\frac{y}{z}+1}\)

Đặt \(\left(\frac{x}{y};\frac{y}{z};\frac{z}{x}\right)=\left(a^3;b^3;c^3\right)\Rightarrow abc=1\)

\(Q=\frac{1}{a^3+c^3+1}+\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}\)

Ta có: \(a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)

\(\Rightarrow Q\le\frac{1}{ac\left(a+c\right)+1}+\frac{1}{ab\left(a+b\right)+1}+\frac{1}{bc\left(b+c\right)+1}\)

\(Q\le\frac{abc}{ac\left(a+c\right)+abc}+\frac{abc}{ab\left(a+b\right)+abc}+\frac{abc}{bc\left(b+c\right)+abc}\)

\(Q\le\frac{b}{a+b+c}+\frac{c}{a+b+c}+\frac{a}{a+b+c}=1\)

\(\Rightarrow Q_{max}=1\) khi \(a=b=c=1\) hay \(x=y=z\)

21 tháng 2 2016

Giả sử \(x\ge y\ge z\) rồi giải