Cho hình chữ nhật ABCD, Kẻ AH vuông gó với BD tại H. Gọi E, F lần lượt là trung điểm DH , BC. chứng minh AE vuông góc với ED
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BD=căn 8^2+6^2=10cm
AH=6*8/10=4,8cm
b: Xét ΔADH vuông tại H và ΔCBA vuông tại A có
góc ADH=góc BCA
=>ΔADH đồng dạng với ΔCBA
c: Xét ΔADM và ΔACN có
AD/AC=DM/CN
góc ADM=góc ACN
=>ΔADM đồng dạng với ΔACN
Gọi R là trung điểm của AH.
E là trung điểm của DH,R là trung điểm của AH nên ER là đường trung bình
\(\Rightarrow ER//DC\) mà \(DC\perp AB\Rightarrow ER\perp AB\)
Xét tam giác ABH có đường cao ER và AR cắt nhau tại R nên R là trực tâm tam giác ABH.
\(\Rightarrow BR\perp AH\)
Do ER là đường trung bình nên \(ER=\frac{1}{2}AC\) mặt khác \(BF=\frac{1}{2}BC\) mà \(AC=BC\Rightarrow ER=BF\)
Ta có ER=BF;ER//BF nên tứ giác ERBF là hình bình hành
\(\Rightarrow FE//BR\) mà \(BR\perp AE\) nên \(FE\perp AE\) ( đpcm )
Bạn kẻ hình nhanh đi rùi mk làm cho nha