Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AEHF có
góc AEH=góc AFH=góc FAE=90 độ
nên AEHF là hình chữ nhật
=>AH=EF
b: góc IFE=90 độ
=>góc IFH+góc EFH=90 độ
=>góc IFH+góc AHF=90 độ
=>góc IFH=góc IHF
=>IH=IF và góc IFC=góc ICF
=>IH=IC
=>I là trung điểm của HC
Xét ΔHAC có HO/HA=HI/HC
nên OI//AC và OI=AC/2
=>OI//AK và OI=AK
=>AOIK là hình bình hành
a: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
Do đó: AEHF là hình chữ nhật
Suy ra: AH=FE
a) Xét tứ giác EAFH có
\(\widehat{AFH}=90^0\)
\(\widehat{FAE}=90^0\)
\(\widehat{AEH}=90^0\)
Do đó: EAFH là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
b) Ta có: \(\widehat{IAC}=90^0-\widehat{AFE}\)
\(\widehat{ICA}=90^0-\widehat{B}\)
mà \(\widehat{AFE}=\widehat{B}\left(=\widehat{HAC}\right)\)
nên \(\widehat{IAC}=\widehat{ICA}\)
mà \(\widehat{IBA}=90^0-\widehat{ICA}\)
và \(\widehat{IAB}=90^0-\widehat{IAC}\)
nên \(\widehat{IAB}=\widehat{IBA}\)
Xét ΔIAB có \(\widehat{IAB}=\widehat{IBA}\)(cmt)
nên ΔIAB cân tại I(Định lí đảo của tam giác cân)
Xét ΔIAC có \(\widehat{IAC}=\widehat{ICA}\)(cmt)
nên ΔIAC cân tại I(Định lí đảo của tam giác cân)
Ta có: IA=IB(ΔIAB cân tại I)
IA=IC(ΔIAC cân tại I)
Do đó: IB=IC
mà I nằm giữa B và C
nên I là trung điểm của BC(Đpcm)
a: Xet ΔAHD vuông tại H và ΔDCB vuông tại C có
góc ADH=góc DBC
=>ΔAHD đồng dạng vơi ΔDCB
c: Xét ΔHAB có HN/HA=HM/HB
nên MN//AB
=>MN vuông góc AD
mà AH vuông góc DM
và AH cắt MN tại N
nên N là trực tâm
=>ND vuông góc AM
=>ME vuông góc AM
a: BD=căn 8^2+6^2=10cm
AH=6*8/10=4,8cm
b: Xét ΔADH vuông tại H và ΔCBA vuông tại A có
góc ADH=góc BCA
=>ΔADH đồng dạng với ΔCBA
c: Xét ΔADM và ΔACN có
AD/AC=DM/CN
góc ADM=góc ACN
=>ΔADM đồng dạng với ΔACN
Gọi R là trung điểm của AH.
E là trung điểm của DH,R là trung điểm của AH nên ER là đường trung bình
\(\Rightarrow ER//DC\) mà \(DC\perp AB\Rightarrow ER\perp AB\)
Xét tam giác ABH có đường cao ER và AR cắt nhau tại R nên R là trực tâm tam giác ABH.
\(\Rightarrow BR\perp AH\)
Do ER là đường trung bình nên \(ER=\frac{1}{2}AC\) mặt khác \(BF=\frac{1}{2}BC\) mà \(AC=BC\Rightarrow ER=BF\)
Ta có ER=BF;ER//BF nên tứ giác ERBF là hình bình hành
\(\Rightarrow FE//BR\) mà \(BR\perp AE\) nên \(FE\perp AE\) ( đpcm )