K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác MKIE có 

\(\widehat{MKI}=\widehat{MEI}=\widehat{EMK}=90^0\)

Do đó: MKIE là hình chữ nhật

b: Xét ΔMPN có

I là trung điểm của NP

IK//MP

Do đó: K là trung điểm của MN

Ta có: K là trung điểm của MN

mà IK⊥MN

nên IK là đường trung trực của MN

25 tháng 11 2018

a) ta có : 

KI vuông góc vs MN (gt),MNvuông góc vs MP (gt), IP' vuông góc vs MP(gt)

suy ra : tứ giác MKIP' là hình chữ nhật(đpcm)

b) ta có : MI = KP (tc hai đường chéo HCN)

suy ra : MF = FI (gt)

KF = P'F = 1/2KP' = 1/2 MF(tc)

vậy 3 đm K,F,P' thẳng hàng

c) ta có : 

KI vuông góc vs NM (gt) , mà MN vuông góc vs MP (gt)

suy ra : 

KI song song vs MP , có PI = IN (gt) 

suy ra : tam giác MNP có KI là ĐBH

suy ra IK bằng  1/2 MP (tc)

có : KI + MP' (hcn) , vậy suy ra : KI = MP' = P'P (tc),vậy MP' = P'P (tc)    (1)

có IP' = P'L (tc)    (2)

mà IL vuông góc vs MP (gt)     (3)

vậy từ (1),(2) và (3) suy ra : tứ giác MIPL là hinh thoi 

18 tháng 11 2021
Cho tam giác MNP vuông tại M (MN < MP). Gọi I là trung điểm NP. H, K lần lượt là hình chiếu của I lên MN và MP. Tứ giác MHIK

a: Xét tứ giác MPNI có

Q là trung điểm chung của MN và PI

Do đó: MPNI là hình bình hành

b: Xét ΔNMP có NQ/NM=NK/NP

nên QK//MP

=>QK vuông góc với MN