Chứng minh (abcabc+ ababab) chia hết cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
phân tích ra rồi cộng lại sẽ đc số chia hết cho 7
abcabc = 100000a+10000b+1000c+100a+10b+c
ababab= 100000a+10000b+1000a+100b+10a+b
=> (abcabc+ababab) = 100000a+10000b+1000c+100a+10b+c+ 100000a+10000b+1000a+100b+10a+b
= 201110a+22111b+1001c
= 91.(2210a+221b+11c)
= 7.13.(2210a+221b+11c)
=> (abcabc+ababab) \(⋮\)7
abcabc = 100000a+10000b+1000c+100a+10b+c
ababab = 100000a+10000b+1000a+100b+10a+b
-->(abcabc +ababab ) =201110a+20111b+1001c
=91(2210a+221b+11c)
= 7.13 (2210a+221b+11c) chia hết cho 7
Giải:
Ta có:
abcabc = 100000.a + b.10000 + c.1000 + a.100 + b.10 +c
ababab = 100000.a + b.10000 + a.1000 + b.100 + a.10 + b
\(\Rightarrow\) abcabc + ababab = 201110.a + 20111.b + 1001.c = 91.( 2210.a + 221.b + 11.c ) chia hết cho 7 ( vì 91 = 13.7 chia hết cho 7 )
\(\Rightarrowđpcm\)
1) cm: abab chia hết cho 101
Ta có : ab . 101 = ab . ( 100 + 1) = ab00 + ab = abab
=> abab chia hết cho 101 ( not 11)
2) ta có: aaabbb = aaa.1000+ bbb
= a.111.1000 + b.111
= a.37.3.1000+ b.37.3
= 37(3000a+ 3b) chia hết cho 37
3)
Ta có: abcabc
= abc. 1000 + abc
= abc. 1001
= abc. 143. 7
= abc . 11 . 13. 7 chia hết cho 7; 11; 13
4) Ta có: ababab = abab.100+ ab
= (ab.100 + ab) .100+ab
= ab.10000+ ab.100 + ab
= ab . 10101
=> ababab chia hết cho 10101
5)
abab - baba = a .1000 + b.100 + a.10 + b - (b .1000 + a.100 + b.10 + a)
= a .1000 + b.100 + a.10 + b - b .1000 - a.100 - b.10 - a
= a . 909 + b . (-909)
= a . 909 - b . 909
= a . 9 . 101 - b . 9 . 101
= 9 . (a . 101 - b . 101) ⋮ 9
abcabc = 100000a+10000b+1000c+100a+10b+c
ababab=100000a+10000b+1000a+100b+10a+b
=> (abcabc+ababab)=201110a+20111b+1001c
=91.(2210a+221b+11c)
=> (abcabc+ababab)\(⋮\)91
ta có 7 và 13 nguyên tố cùng nhau mà 7.13=91
=> (abcabc+ababab) \(⋮\)7
Ta có:
ababab=ab.10101 (không cần dài dòng như @bao quynh cao)
=ab.1443.7 chia hết cho 7
Vậy ababab chia hết cho 7
a)Ta co :
ab*10000+ab*100+ab*1
=ab*(10000+100+1)
=ab*10101 Ma 10101:7
=> ababab:7
b) a*100000+a*10000+a*1000+b*100+b*10+b*1
=a*111000+b*111
=ab*111111 Ma 111111:37
=aaabbb:37
ababab=ab.101010=ab.14430.7\(\Rightarrow\)ababab\(⋮\)7
aaabbb=111.1000=37.3.1000\(\Rightarrow\)aabbb\(⋮\)37
Phân tích ra khác được 1 số chia hết cho7
abcabc+abacab
(=) ax100000+bx10000+cx1000+ax100+b x 10+c+ax100000+bx10000+ax1000+b x 100+ax10+b
(=) ax(100000+100+100000+1000+10) + bx(10000+10+10000+100+1)+ cx(1000+1)
(=)ax201110+bx20111+cx1001
vì 201110 chia hết cho 7 => ax20110 chia hết 7
vì 20111 chia hết cho 7 => bx20111 chia hết cho 7
vi 1001 chia hết cho 7 => cx1001 chia hết cho 7
=> a x 201110+bx20111+cx1001 chia hết cho 7
=>abcabc+ababab chia hết cho 7